
Abstract The very complex, multi-level hierarchical

construction of textile composites and their structural

components commonly manifests via significant prop-

erty variation even at the macro-level. The concept of a

‘‘meso-volume’’ (introduced by this author in early

1990s) is consistently applied in this work to 3-D stress/

strain and failure analyses of 3-D woven composites at

several levels of structural hierarchy. The meso-volume

is defined as homogeneous, anisotropic block of com-

posite material with effective elastic properties deter-

mined through volumetrically averaged 3-D stress and

strain fields computed at a lower (‘‘finer’’) level of

structural hierarchy and application of generalized

Hooke’s law to the averaged fields. The meso-volume

can represent a relatively large, homogenized section

of a composite structural component, a lamina in

laminated composite structure, a homogenized assem-

bly of several textile composite unit cells, a single

homogenized unit cell, a resin-impregnated yarn, a

single carbon fiber, even a carbon nanotube assembly.

When composed together, distinct meso-volumes con-

stitute a 3-D Mosaic model at the respective hierarchy

level. A multi-scale methodology presented in this

paper first illustrates 3-D stress/strain analysis of the

Mosaic unidirectional composite, computation of its

effective elastic properties and their further use in 3-D

stress/strain analysis of the Mosaic model of 3-D woven

composite Unit Cell. The obtained 3-D stress/strain

fields are then volumetrically averaged within the Unit

Cell, and its effective elastic properties are computed.

The predicted effective elastic properties of 3-D woven

composite are compared with experimental data and

show very good agreement. Further, those effective

elastic properties are used in 3-D simulations of three-

point bending tests of 3-D woven composite; theoret-

ical predictions for central deflection show excellent

agreement with experimental data. Finally, a 3-D

progressive failure analysis of generic 3-D Mosaic

structure is developed using ultimate strain criterion

and illustrated on the 3-D woven composite Unit Cell.

The predicted strength values are compared to exper-

imental results. The presented comparisons of theo-

retical and experimental results validate the adequacy

and accuracy of the developed material models,

mathematical algorithms, and computational tools.

Introduction

Many performance benefits, manufacturing advantages

and cost reduction opportunities offered by modern

3-D woven textile preforms for composites (which were

addressed in many recent publications, see [1–12] for

example), are now well understood and appreciated.

The performance benefits include controllable sup-

pression of delamination, dramatically improved frac-

ture toughness, damage tolerance, impact and ballistic

resistance, reduced notch sensitivity, extended fatigue

life, etc. The manufacturing advantages primarily

manifest through the use of a relatively thick (though

sufficiently conformable) single-layer preform instead

of a stack of thin, multi-layer tapes or 2-D fabrics, thus

allowing to eliminate the labor intensive and time

consuming lay-up and stitching operations, minimize

cutting and other similar procedures. Particularly, it
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was shown in [3] that relatively thick, complex shape

composite parts can be machined from standard flat

‘‘billets’’ of 3-D woven composites, just like metal parts

can be machined from bulk metal. Alternatively, rela-

tively thick complex shape composite parts can be

fabricated by infusing polymeric resins into 3-D woven

preforms by using vacuum bags or special closed molds,

with subsequent cure at room or elevated temperature.

Importantly, experimental observations first reported

in [2] and then independently confirmed by other

investigators, showed that advanced integral 3-D

orthogonal woven preforms possess much higher per-

meability characteristics and, consequently, provide

much higher resin infusion rates than equivalent

thickness stacks of 2-D fabric preforms. This effect

enables to either produce larger composite structures,

or reduce resin infusion time, or use higher viscosity

resin systems.

In spite of significant progress in the field of 3-D

woven preforms and composites, there are certain

issues that obstruct a broader and faster penetration of

this class of advanced materials into different industrial

markets. The following should be mentioned as the

major ones: (i) very minimal amount of mechanical

characterization data and lack of any considerable

property database; (ii) concerns about applicability of

traditional mechanical characterization methods (doc-

umented as ASTM standards) to this class of materials,

and (iii) lack of established, thoroughly validated,

computationally efficient and accurate structural anal-

ysis and design tools. Indeed, complex and very diverse

three-dimensional fiber architectures, their inhomoge-

neity, significant variability of mechanical characteris-

tics of 3-D textile composites, along with some other

features, seriously challenge application of the routine

Strength of Materials and Classical Lamination Theory

analysis approaches. Yet, these types of analysis are

commonly used (often without any doubts or warnings)

for processing experimental data, for material property

predictions, for structural analysis and design.

Further on, relatively large (typically several mm

long, wide, and sometimes also thick) unit cell size in

the in-plane and through-thickness directions of textile

composites challenges traditional strain measurement

methodologies, particularly due to experimental spec-

imens typically contain only few unit cells along the

width and thickness. The consequence shows in sig-

nificant dependency of the measured strains upon the

strain gage base length and its location, as discussed

and illustrated in [13–16]. Small gages mounted on the

specimen surface may incidentally measure local

deformation of the yarn, local matrix deformation, or

any mixture of the two. Obtaining macroscopic

mechanical properties (i.e. ‘‘effective’’ elastic and

shear moduli, Poisson’s ratios) of textile composite

from such strain measurement data by using equations

which are only applicable to homogeneous materials,

with no account of property variability in the width and

thickness directions, may not only be methodologically

incorrect, but also very inaccurate.

Furthermore, the actual load transfer mechanisms

from the grips to the specimen middle zone (in which

the strains are actually measured) may be very differ-

ent from the load transfer mechanisms assumed in the

respective ASTM standards. This problem is usually

most evident in shear and compressive tests.

Finally, the anticipated ‘‘dominating’’ failure mode

(if such can be identified at all) of 3-D textile com-

posites is often not realized with the use of specimen

dimensions and loading schemes recommended by

ASTM standards. This may result in obtaining totally

inadequate strength characteristics. The above assess-

ments are based on an extensive practical experience

of this author working in the area of 3-D textile pre-

forms and composites for nearly two decades. Some of

the aforementioned analytical and experimental issues

have been addressed in reference book [15], recent

report [17] and papers [18, 19].

Computational modeling, predictive analysis and

design optimization of 3-D textile composites consti-

tute a challenging field of research, which includes

many distinct topics. Among those are (the sequence

below is arbitrary):

i. fabric geometry modeling in free and com-

pressed states

ii. resin flow modeling through textile preforms

iii. elastic property predictions of textile composites

iv. elastic structural response under complex

loading cases

v. damage mechanisms, initial and progressive

failure modeling, and strength predictions

vi. fatigue life and durability predictions

vii. analysis of stress concentration in the presence

of holes, notches, bolts, fasteners, etc.

viii. analysis of bonded joints of different configu-

rations

ix. impact modeling, including theoretical quanti-

fication of impact damage

x. compression after impact and other problems

associated with damage tolerance

xi. ballistic impact, penetration and perforation

phenomena

xii. stress wave propagation and attenuation,

damping and energy dissipation

xiii. blast effect prediction and mitigation.
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The above list is not exhaustive. In this paper only

few of the listed topics are addressed or touched,

mainly (i), (iii), (iv), and (v). Very few of the afore-

mentioned topics have been seriously studied for 3-D

woven composites; probably (iii), (v), (ix) and (xi)

gained most of attention. Geometric modeling of 3-D

woven preforms, including conformability and shape

variation effects under typical industrial composites

fabrication conditions demands much more attention.

Recent publications [20, 21] provide examples of

advanced theoretical and experimental research in this

area. Very few studies have been reported up to date

on computational modeling and analysis of 3-D woven

composites under impact, ballistic and blast effects, see

[22–26].

References [15, 16, 18, 27–48] well represent major

theoretical studies of effective elastic properties of 3-D

woven fabric composites and elastic response of their

structural components. The main challenges in this

area of research are determined by the presence of

continuous through thickness (commonly called ‘‘Z-

directional’’) reinforcement and its substantial effect

on the preform architecture and composite material

behavior. Due to this essential feature, any modeling/

analysis approach has to be three-dimensional, simply

because it shall explicitly account for the through-

thickness variation of the reinforcement architecture

and for the presence of through-thickness fibers.

Accordingly, any two-dimensional model or analysis

method that is borrowed from the computational

toolbox available for thin laminates and based on

through-thickness property homogenization, may be

inadequate. A review of modeling and analysis meth-

ods which are, in principle, applicable to 3-D woven

composites, is presented next. It is concluded with

state-of-the-art assessments and practical recommen-

dations how to approach modeling and analysis of

textile composites in general and 3-D woven compos-

ites in particular.

History and state-of-the-art in modeling

and analysis of 3-D woven composites

Analytical models and first 3-D finite element

analysis

To start this historic overview, one of the pioneering

publications [27], which makes the group of its own,

has to be briefly analyzed. It presents several analytical

and numerical analysis approaches applicable to 3-D

orthogonal weave unit cells. The approaches were

illustrated on specific numerical examples, and

comparison between theoretical and experimental data

was provided. The first approach is 3-D finite element

analysis with 8-noded hexahedral orthotropic brick

element. Today this is, of course, a very common

analysis method, however in the mid-1980s is was a

rarity. Elastic properties of the elements used in the

analysis corresponded to the resin-impregnated

graphite fiber tows (which were modeled as unidirec-

tional composites). The second approach (called

‘‘analytical’’) represented the same unit cell as an

assemblage of blocks with different material properties

connected in series or in parallel. In one variant of this

approach, each series of strips was first replaced by a

single homogeneous block having effective elastic

properties, then all such homogeneous blocks (assem-

bled in parallel) were reduced to a single orthotropic

homogeneous block, which represented fully homoge-

nized unit cell of the 3-D orthogonal woven composite.

In the other variant of the same analytical approach

the first step was to replace each set of parallel slabs by

a homogeneous block having effective elastic proper-

ties. Then the obtained blocks (assembled in series)

were replaced by a single homogeneous orthotropic

block corresponding to the entire unit cell. Elastic

properties of each homogeneous block were estimated

by the use of rule of mixtures or classical lamination

theory.

Numerical results presented in the discussed work

showed surprisingly good agreement with experimental

data for in-plane Young’s moduli and shear moduli.

Particularly, results of 3-D finite element analysis

deviated from experimental data only by 4.5% for

elastic modulus in warp direction, by 1.8% for elastic

modulus in fill direction, and by 9.7% for in-plane

shear modulus. Considering that fiber waviness was not

taken into account, the success of theoretical predic-

tions of effective elastic properties was mainly attrib-

uted by authors of [27] to ‘‘the lack of fiber waviness in

the orthogonal fabric’’. This early work showed that

3-D orthogonal woven fabrics and composites are

very suitable objects for validating various type 3-D

modeling and analysis tools.

Orientation Averaging Method

Many works on elastic property predictions of 3-D

woven fabric composites, see for example [29, 34, 35,

41, 42], used Orientation Averaging Method (OAM),

which includes two versions: Stiffness Averaging

Method (SAM) and Compliance Averaging Method

(CAM). The first one corresponds to isostrain, while

the second one to isostress hypotheses. This theoretical

approach was originated at the Institute of Polymer
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Mechanics (Riga, Latvia) in the late 1970s, see [49–53].

The general presentation of this approach can be found

in [54]. A detailed description of this approach can be

also found in books [15, 30] and many articles. Also,

the concept of ‘‘blending’’ both SAM and CAM in one

analysis approach was proposed in [15].

The OAM is relatively simple and it is limited to

effective elastic property predictions. Due to its sim-

plicity, most of researchers and engineers dealing with

analysis and design of textile composites either devel-

oped their own code or have access to a code realizing

one or the other version of OAM. Therefore, this

analysis approach has some ‘‘universal’’ value—many

analysts can solve some selected benchmark problem

for textile composite and then mutually compare the

obtained results. Another advantage of this approach is

in its ability to predict upper and lower bounds of the

elastic characteristics; experimental data typically fit

between the bounds. On the other hand, mechanistic

hypotheses in the foundation of OAM are very sim-

plistic and highly idealized. For many practical textile

architectures they may not be adequate to actual fiber

architectures and micromechanics mechanisms.

Besides, OAM is not capable for accounting realistic

details of the yarn geometry (i.e., continuously varying

curvature of its centerline, actual cross-sectional shape

and its variation), as well as yarn interactions at the

crossover points in dry preforms and composites. Also,

it is not possible to estimate a priori how accurate

results provided by OAM will be. As our practical

experience shows, the accuracy of effective elastic

property predictions by OAM significantly depends on

specific fabric architecture, elastic properties of fiber

and matrix, and partial fiber volume fraction in each

reinforcement direction.

Modified Matrix Method

Another approach which can be used for elastic

property predictions of textile composites is the Mod-

ified Matrix Method (MMM). This approach has also

been originated at the Institute of Polymer Mechanics

in early 1970s and originally published in [55]. Later

generalizations were presented in reference book [31].

Some authors associate this method with the OAM,

however the two methods have very different theo-

retical backgrounds. MMM involves very specific

micromechanics into the derivation of effective prop-

erty equations. In fact, the MMM version presented in

[55] is, essentially, the generalization of the earlier

analysis approach [56] (also developed at the Institute

of Polymer Mechanics), which considered composites

with two-directional orthogonal planar reinforcement.

To its disadvantage, MMM is very limited; it can only

be applied to composites reinforced in three orthogo-

nal directions (fortunately, 3-D orthogonal woven

composites belong to this category). Note that original

equations given in [55] contain some minor inconsis-

tencies in the hypotheses and typo errors; the revised

equations with corrections can be found in [15] and

[41]. In these works the revised versions of MMM were

applied to some glass fiber and carbon fiber 3-D

orthogonal woven composites and showed very good

agreement with experimental data, particularly for

shear moduli and Poisson’s ratios, which were pre-

dicted less accurately with OAM. Though MMM

predictions may be more accurate than the OAM ones

for specific 3-D orthogonal weave composites, severe

limitations embedded in MMM make its range of

applicability very narrow. Besides, there are probably

only few available computer codes realizing MMM.

Probabilistic/stochastic analysis

It is a common belief that fiber waviness and mis-

alignment are the two major technological reasons of

commonly observed discrepancies between theoretical

and experimental data for elastic properties of textile

composites. Experimentally observed waviness and

misalignment of warp, fill and through thickness yarns

of 3-D interlock weave composites have been discussed

and analyzed in [35, 57, 58] and other publications.

Such waviness may be caused by a variety of manu-

facturing artifacts imparted during fabric formation,

handling, placement in the mold or vacuum bag, resin

flow, shrinkage and warpage during curing and cooling.

A simple analytical approach developed in [35] allows

one to estimate the effect of warp (called ‘‘stuffers’’)

and fill (called ‘‘fillers’’) tow waviness on elastic

properties of 3-D interlock weave composites. Monte-

Carlo method was applied in [36, 37] to 3-D interlock

weave composites in conjunction with the finite

element ‘‘Binary Model’’, which is discussed in the

next section. Application of Monte-Carlo simulations

has also been demonstrated in [57].

A general analytical approach, which can be viewed

as the probabilistic extension of the classical OAM,

was developed in [59]; the approach is based on the

theory of random functions. The theory has been used

for the derivation of probabilistic characteristics of

random tow paths in some generic fabric that may have

any number of reinforcement directions in three-

dimensional space. This approach has been applied in

[41, 47, 59] to various specific types of textile com-

posites, including 3-D woven ones. The advantage of

this approach is its ability to solve practically any
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textile architecture with very little computational time

and expense. Generating numerical results by a com-

puter code implementing this approach requires 3-4

orders of magnitude less computational time than

Monte-Carlo simulations, with essentially the same

results. Actually, in this analytical approach only one

analysis run (‘‘trial’’) is required, while Monte-Carlo

simulation requires to conduct at least hundreds, more

commonly thousands, tens and hundreds of thousands

‘‘trials’’ in order to obtain statistically meaningful dis-

tribution functions for elastic characteristics. For

example, 100,000 trials were carried out in [57] for

generating each probability distribution. While such a

number of Monte-Carlo simulations is feasible for

simple problems, in practical finite element analysis

cases of complex structures even tens or hundreds of

trials may take too long time and be prohibitively

expensive.

Binary Model

Another original, rather generic and extensively dem-

onstrated in publications approach, aimed primarily at

failure modeling in various types of textile composites,

is called ‘‘Binary Model’’. The Binary Model is,

essentially, a special type of 3-D finite element analysis.

This approach was first introduced in [36] and applied

to 3-D interlock weave composites in [37]. As sug-

gested in [36], the goal of this approach was to provide

‘‘the simplest possible formulation of such computa-

tional model which emphasis is placed on realistic

representation of the pattern of reinforcing tows, ran-

dom irregularity of tow positioning, randomness of the

strength of constituent elements, and the mechanics of

stress redistribution around sites of local failure’’. As

one could have expected, in order to accomplish the

above stated very ambitious goal, certain compromises

have to be accepted. The most principal of them

becomes obvious when dwelling a little bit into the

model formulation. While resin-impregnated yarns,

each containing thousands and tens of thousands of

fibers, form the reinforcement of textile composite, in

the Binary Model all of the yarns are treated as bodi-

less, one-dimensional ‘‘line elements’’. Such model

assumption seems, without further insight, a very

strange idea, because in reality reinforcing yarns may

occupy 50%, 60%, even 70% of the total composite

volume, while they are assigned zero volume in the

model. However, if we forget for a while about Real

Materials and Physics associated with them and think

of this model assumption in the framework of Solid

Mechanics, it does not look strange anymore and

becomes quite appealing.

Indeed, Solid Mechanics (which is, essentially, a

mathematical science) is full of contradictions between

Geometry and Physics: finite volume of some material

is reduced to a point; its elongations and distortions are

converted into six mathematical strain components

assigned to that point; surface tractions acting on the

volume are converted into six mathematical stress

components applied to the point; failure of that

material volume (which is, of course, a complex phys-

ical phenomenon) is commonly expressed through

mathematically constructed ‘‘phenomenological failure

criteria’’ which relate, in one or more equations, the

aforementioned mathematical strains or stresses on

one side and some ‘‘ultimate material characteristics’’

on the other. The latter ones have to be obtained from

mechanical tests by loading macroscopic material

specimens. Obviously, equalizing mathematical strains

and stresses (determined at the point) in one side of

equation with macroscopically measured characteris-

tics (expressed through elongations and forces at the

instant when specimen fails in the grips of testing

machine) in the other side of the same equation is not a

trivial task. This explains why it is so difficult to accu-

rately predict ‘‘strength’’, and especially strength of

complex textile composites. But, that is what Solid

Mechanics of composite basically does.

Now, returning to the Binary Model and evaluating

it in the framework of Solid Mechanics, we can accept

the assumption that reinforcement of textile compos-

ites is geometrically manifested by centerlines of the

reinforcing yarns which are modeled in terms of one-

dimensional (1-D) finite elements. Next question is:

how do the model takes account of all mechanical

properties carried out by the reinforcement? And this

is done in Binary Model very elegantly: each resin-

impregnated yarn retains only longitudinal properties,

which are associated with the bodiless centerline

and its respective 1-D finite elements. The rest of

mechanical properties are delegated to the bulk of

homogeneous anisotropic 3-D medium via special

variational formulation of the respective 3-D finite

element. As the result, textile composite is modeled as

a set of infinitely thin elastic or inelastic curved

‘‘strings’’ embedded in 3-D medium; effective aniso-

tropic properties of the medium include transverse

properties of all individual resin-impregnated yarns

and all properties of matrix material. The 3-D effective

medium elements and the 1-D impregnated yarn

elements are coupled at the mutual nodes. Important

feature of this model is that none of line elements

representing two distinct impregnated yarns interact

directly; they can only influence each other through

effective medium elements.
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The argument made by Binary Model developers

that the tows are mainly carrying longitudinal tensile

and compressive loads, thus its transverse properties

are secondary, can be accepted. However, it still looks

like significant shortcoming of this model that there is

no transfer, in the sense of the same Solid Mechanics,

of shear and transverse normal tractions between the

resin impregnated yarn and matrix, or between dif-

ferent resin impregnated yarns. In order to make some

improvements of the model from this point of view,

different kind of ‘‘springs’’ were additionally incorpo-

rated in the Binary Model. As suggested in [36],

‘‘coupling springs’’ could be used between the nodes of

broken tows and the nodes of effective medium in

progressive failure modeling. More springs were

introduced for coupling ‘‘warp weavers’’ (through

thickness tows) with the fill tows around which the

warp weaver wraps. Of course, any kind of ‘‘springs’’

are foreign elements in the Solid Mechanics analysis

development, thus their involvement deduces the

elegancy and consistency of the Binary Model. Also

worth noting that the model contains certain parame-

ters which cannot be specified a priori and require

‘‘calibration’’ of the model against experimental data.

Such calibration was demonstrated for the case of 3-D

interlock weave composites in [37] with the use of

experimental data from [35].

Being a little critical in the previous paragraph, we

have to admit yet that there are several important

advantages provided by the Binary Model in compar-

ison with the other known analysis tools. Particularly,

the size of computational problems, when analyzing

complex textile composites, is significantly reduced in

the Binary Model versus any direct 3-D finite element

analysis approach, where yarns are treated as 3-D

solids. Also, there are no singularity points or lines in

this finite element formulation (see discussed in the

next section). Another advantage is that Binary Model

allows one to relatively easily incorporate non-linear

properties into both the reinforcing tow and effective

medium behavior. Further, the model showed capa-

bility to simulate various failure mechanisms experi-

mentally observed in textile composites. Also

importantly, the model enables for analyzing stochastic

effects of tow misalignment via Monte-Carlo simula-

tion, as demonstrated in [37].

‘‘Meso-volume’’ and ‘‘3-D Mosaic’’ concepts

Considering that textile composites have very complex

hierarchical construction that leads to significant

property variations at different levels, this author

attempted since the early 1990’s to develop a consistent,

Solid Mechanics based multi-scale 3-D analysis

methodology, that would enable to predict static and

dynamic stress/strain fields, failure and fracture

phenomena in various textile composites. The initial

idea was to develop some unified analysis tool that

would be applicable to any level of structural hierarchy.

Particularly, the methodology has to allow one to per-

form analysis anywhere from the ‘‘global’’ analysis with

totally smeared mechanical properties to the finest

‘‘micro’’ analysis at the level of individual fiber and

matrix, or even at the level of individual fiber micro-

structure. As the result, two principal concepts have

been introduced. The first is the concept of ‘‘meso-

volume’’ [60], which is defined at some level of struc-

tural hierarchy as a homogeneous anisotropic material

block having effective elastic properties. The second is

the concept of 3-D Mosaic model [61], which represents

composite structure at any hierarchical level as a

Mosaic assemblage of an arbitrary number of distinct

homogeneous anisotropic material blocks (meso-

volumes) in the three coordinate directions. These two

concepts have been incorporated in the 3-D variational

analysis approach developed and implemented in [14,

15, 60–62]. The approach used special ‘‘deficient’’ spline

functions of an arbitrary degree for displacement

approximation in the three coordinate directions within

3-D Mosaic body.

Effective properties of each specific meso-volume

can be predicted using more detailed build-up model of

a composite at the next lower level of structural hier-

archy. For example, if unidirectional composite is

treated as a meso-volume, its effective elastic proper-

ties are predicted from elastic properties of individual

fibers and matrix, fiber geometry and their arrange-

ment in the composite. If the meso-volume represen-

tation is used for a unit cell a textile composite, its

effective elastic properties are determined via elastic

properties of resin-impregnated yarns (which are in

this case treated as homogeneous unidirectional com-

posites oriented in two, three, or more different

directions), their geometry, spatial arrangement and, of

course, on elastic properties of matrix material.

Another important example is a laminated composite

consisting of some number of layers with planar rein-

forcement but different fiber orientation within each

layer. Each individual layer in this case is treated as

distinct meso-volume having effective elastic proper-

ties of the respective unidirectional composite oriented

at some angle with respect to the global coordinate

axes associated with the laminate. Having effective

properties of all individual layers, one can further

determine effective properties of the whole laminate,

which thus becomes the next level, ‘‘global’’
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meso-volume. A practical composite structural part,

which may consist of many dissimilar layers and con-

tain joints, connections, stiffeners, patches and other

features, can then be analyzed as 3-D Mosaic assembly

of ‘‘global’’ meso-volumes, see for example analysis of

laminated composite skin with integral 3-D braided

composite stiffener in [61]. Other examples of this

analysis applications to various textile composites can

be found in [14, 15, 32, 33, 62–65]. The analysis

approach also showed exceptional accuracy and effi-

ciency when solving 3-D static elasticity problems of

laminated composite plates, see [15, 60, 66–69, 71, 72]

and thick cylindrical shells [15, 70]; see also summary

of above works in [73].

The new version of variational 3-D Mosaic model

approach presented in [74] utilizes Bernstein approxi-

mation polynomials of an arbitrary degree instead of

‘‘deficient’’ splines used for displacement approxima-

tions in the earlier version. This makes the mathe-

matical formulations and computational algorithms

much simpler, more open to various generalizations,

and very close to conventional finite element analysis

methodology. Actually, the approach can be identified

as the hybrid p-s-type 3-D 8-noded hexahedral finite

element on an arbitrary order. The element allows one

to add degrees of freedom (d.o.f) either by increasing

the power of basis functions, or by refining discretiza-

tion mesh, or by doing both things simultaneously.

There are several advantages of such element versus

higher-order 3-D hexahedral elements based on

Lagrange interpolation polynomials, as discussed in

[74]; among its most important features are simplicity

of analytical derivations, computational stability with

increasing order of element, and higher convergence

rate of strains and stresses.

In its current version, 3-D Mosaic analysis tool

enables for accurate and computationally efficient

predictions of 3-D displacement/strain/stress fields,

initial and progressive failure, 2-D planar crack prop-

agation in three orthogonal directions, and various

type transient dynamic responses (specifically caused

by blast and rigid body impact) of laminated, sandwich

and different kind textile composite materials and

structures. This has been demonstrated on various

static, crack propagation and dynamic deformation

problems in [18, 22, 23, 26, 73–78]. Importantly, this is

inherently multi-scale approach, meaning that the

output data provided by the analysis performed at a

lower hierarchical level can be used as input data for

the analysis at a higher hierarchical level, as originally

demonstrated in [33].

Now, returning to the basic ‘‘Meso-volume’’ and

‘‘3-D Mosaic’’ concepts, the following four important

aspects of this methodology will be briefly discussed in

this section (they will be more thoroughly analyzed and

illustrated in the rest of this paper): (a) determination

of effective properties of meso-volumes; (b) division of

the material/structural component into meso-volumes,

(c) boundary conditions between adjacent meso-

volumes, and (d) artificial mathematical singularities

created by the ‘‘Meso-volume/3-D Mosaic’’ modeling

approach.

Elastic property homogenization can be performed

for each specific meso-volume type using various

available analytical and numerical methods, particu-

larly OAM, MMM, ‘‘sequential-parallel’’ analytical

models discussed in Sections ‘‘Analytical models and

first 3-D finite element analysis, Orientation Averaging

Method, and Modified Matrix Method’’ above, and

various numerical methods (finite element analysis

specifically). Also, as shown in [18], 3-D Mosaic model

itself is self-sufficient—it can be used for this purpose

at different levels of structural hierarchy. What is

needed for performing effective elastic property pre-

dictions using 3-D Mosaic approach is the involvement

of special procedures for volumetric averaging of stress

and strain fields, in conjunction with material stress–

strain relations for each individual meso-volume.

Division of the analyzed composite material or its

structure into meso-volumes may be categorized as (A)

obvious and unique, or (B) intuitive and arbitrary.

Some examples belonging to category (A) are: unidi-

rectional composites with well-defined interfaces

between fibers and matrix, laminates with well-defined

interfaces between layers, sandwiches with well-

defined interfaces between skins and core, stiffened

structures with well-defined interfaces between skins

and stiffeners, bonded joints with well-defined inter-

faces between adherends and adhesive. In practice, the

requirement of ‘‘well-defined interface’’ may not be

satisfied and, as was suggested in [60], some transi-

tional ‘‘interphase’’ material can be added to the

model. Its geometry and properties have to be deter-

mined from experimentally measured gradual property

variation in the transition zone. This case falls between

categories (A) and (B).

Fabric geometry modeling and voxel sorting

Further, when modeling textile composites it is possi-

ble, ideally, to distinguish between reinforcing yarns

and matrix, then assign respective meso-volumes to the

yarns and to the matrix, and construct 3-D Mosaic

model. This is relatively simple task if the yarns are

straight and orthogonal, a more complex task if

the yarns are straight but non-orthogonal (due to
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meso-volumes of more complex shapes than parallel-

epipeds have to be used). The task becomes very

complex if the yarns are curved, because mechanical

properties of each curved yarn continuously change

with respect to the global coordinate system. And

further serious complication adds if the yarns change

their cross-sectional shape and/or mutually penetrate

(which always happens in the crossover regions). With

all above complications taken into account, the goal

to develop sufficiently general modeling and analysis

tool for textile composites at the hierarchical level of

individual yarns turns to be quite illusive.

What can be done in such challenging situation? The

approach described in [14, 15, 62] and applied to sev-

eral different textile composite systems in [14, 15, 32,

33, 61–63] offers one viable alternative to quantify and

simplify actual yarn geometry and spatial architecture.

First, textile composite element is divided, quite

arbitrarily, into a number of meso-volumes; so, this

approach obviously belongs to category (B) above.

Then, the reinforcement geometry is modeled within

each meso-volume, using information about the pre-

form manufacturing method and composite processing

technique. Different Processing Science Models can be

used to relate manufacturing parameters to the rein-

forcement architecture in final composite product,

resulting in 3-D geometric model identifying which

part of the meso-volume is occupied by each rein-

forcing yarn, and which parts are occupied by matrix.

The geometry representation is in a numerical (as well

as graphical) form, to make it possible to quantify each

yarn centerline path and local cross section. From

this it is also possible to quantify twist and bending

associated with the yarn at each point in space. The

points corresponding to the swept cross-sections can

be smoothed with a Beziér patch. The result can be

presented as graphical rendering of selected fabric

element.

If assumed, for simplicity, that the fabric element

does not change during resin infusion and composite

consolidation, the obtained graphical image can be

used as the final reinforcement architecture in textile

composite. The computation of effective mechanical

properties of the meso-volumes from this geometric

model is achieved by partitioning each meso-volume

into sub-meso-volumes (called ‘‘voxels’’) and applying

‘‘voxel sorting’’ technique. Each voxel is tagged as

either yarn voxel or matrix voxel. Voxels belonging to

yarns made of different fiber materials (like in hybrid

fiber preforms) are tagged differently. Also, each yarn

voxel is tagged to its orientation.

As the result of applying voxel sorting technique

(see further details in [14, 15]), one obtains total

volume fraction of each fiber type within meso-volume

and can further determine effective elastic properties

of the meso-volume. Numerical examples illustrating

application of this method to plain weave composites

can be found in [14, 15, 62, 63, 65]. Same approach has

been used for predicting effective elastic properties of

3-D interlock weave composites in [15, 32, 33, 62], 2-D

triaxial braid composites in [15, 63], and 3-D braid

composite in [61]. In work [46] of other authors, who

were not aware of the aforementioned earlier publi-

cations, analogous voxel sorting technique was used for

computing effective elastic properties of 3-D orthogo-

nally reinforced composite Unit Cell.

From general perspective, voxel sorting technique in

a combination with OAM is, probably, the simplest

method of predicting effective elastic properties of

some generic homogenized volumetric element of

complex textile composite. Irrelevantly to particular

numerical analysis method applied, the predicted

effective elastic properties of all meso-volumes can

serve as the necessary input data for the analysis.

Specifically, each individual 3-D finite element in the

mesh of elements generated for 3-D analysis of some

composite structure can be called a meso-volume.

Accordingly, its distinct set of elastic characteristics

can be determined using methods discussed above.

3-D Mosaic structures and internal continuity

conditions

After the division of composite structure into meso-

volumes and the subsequent computation of effective

elastic properties of all meso-volumes has been per-

formed, one can compose the respective 3-D Mosaic

model of the structure, which would possibly include

step-wise variations of elastic properties along one,

two, or three coordinates. Generic Mosaic parallele-

piped introduced in [74] and shown in Fig. 1 can be

used as the model applicable to many specific materials

and structural components. Each individual brick in

the parallelepiped may have its distinct anisotropic

elastic properties. As one particular example, step-wise

variation of elastic properties in only one (through

thickness) direction obviously corresponds to the cases

of flat laminated or sandwich plates. The other par-

ticular example is unidirectional composites where

there are step-wise variations of certain elastic char-

acteristics in two directions transverse to the fiber axis.

More complex examples, where there are step-wise

variations of elastic characteristics in all three coordi-

nates, are less obvious. Probably, the simplest of them

is two orthogonal dissimilar material fibers in contact

with each other and with surrounding dissimilar matrix,
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as illustrated in Fig. 2a. In this case there is a step-wise

z-axis property variation between the fibers, and step-

wise property variations in x- and y-axes between each

fiber and matrix. A more complex example is shown in

Fig. 2b, where there are three orthogonal dissimilar

material fibers in contact, surrounded by matrix. These

two material assemblies represent specific cases of 3-D

Mosaic structure, and they can be modeled in terms of

generic Mosaic parallelepiped of Fig. 1.

If the type models of Fig. 2 are further elaborated,

they would lead to the structural models of many

practical composites reinforced with 2-D weave, 2-D

triaxial braid, 3-D weave, and 3-D braid illustrated in

Fig. 3. Now we come to a fundamental understanding

that, if performing 3-D analysis of any type textile

composite, containing reinforcement in two or more

directions, in terms of 3-D meso-volumes, there will be

inevitable discontinuities of elastic properties in all

three coordinates.

A very similar situation is faced when performing

3-D analysis of non-uniform textile composite which is

divided into meso-volumes (or finite elements) having

distinct elastic properties, following the methodology

described above. This effect has been recognized in the

earlier 3-D analysis studies, where 3-D brick-type

Mosaic model was applied to various textile compos-

ites, see [14, 15, 32, 33, 61–64]. In this case the jumps of

elastic properties between adjacent meso-volumes (or

discrete elements) may be created artificially, but they

become a reality in the computational model. Simi-

larly, to our case, their presence may be hidden in the

depth of some 3-D finite element analysis routines (like

extrapolation and averaging of material input data and

smoothing stress/strain output results), and not even

realized by the user. Yet, being aware of their presence

and understanding their possible effects on the output

stress/strain fields, failure characteristics, etc. (rather

than taking the commercial finite element code as

‘‘black box’’) may be helpful when evaluating and

interpreting numerical results.

One specific problem is that having elastic property

discontinuities within analyzed structure makes it very

difficult to exactly satisfy all of the necessary internal

continuity conditions. This issue has been discussed in

detail in [60, 61] with some illustrative examples and

practical suggestions. Indeed, when analyzing homo-

geneous material with discretization into 3-D elements,

it is sufficient to satisfy continuity of all displacements

and their first derivatives between the elements

everywhere within the structure, thus assuring conti-

nuity of all strain and stress components. Contrary to

that, when analyzing, for example, a laminate, adding

continuity of first derivatives of all displacements

within the structure to continuity of displacements,

would result in a totally wrong solution. Obviously, the

achieved continuity of all strain components at the

interfaces between dissimilar materials would be in

contradiction with the required continuity of transverse

stresses. Therefore, strain continuity can be imposed
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Fig. 1 Generic 3-D Mosaic model of a composite material/
structure [74]

Fig. 2 Examples of simple
3-D Mosaic models with
step-wise material property
variations in three
coordinate directions
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anywhere within the structure with exception of all

interfaces. Same is valid in a general case of 3-D

Mosaic structure, where interfaces can be oriented in

different directions.

It may seem unrealistic to impose selective strain

continuity, however 3-D Mosaic analysis approach with

the use of Bernstein polynomials developed in [74]

allowed us to elegantly solve this task. Yet it should be

understood that imposing continuity of displacements

and selective continuity of strains within the structure

having step-wise variations of elastic properties does

not automatically provide continuous transverse stres-

ses at the interfaces between dissimilar materials.

Without using extremely cumbersome and limited in

applications ‘‘mixed’’ variational formulations (see

reviews of this type finite element analysis approaches

in [15, 60, 66]), the transverse stress continuity can be

satisfied only approximately, with their jumps at the

interfaces controlled by the computational mesh

refinement and/or increase of the polynomial degree.

As illustrated by numerical examples in [15, 60, 66,

71–75], the jumps can be reduced to any desired level

though will never become exactly zero.

3-D stress singularities

Another serious challenge of 3-D analysis in the pres-

ence of internal discontinuities of elastic properties is

possible stress singularities. The general principle of

solid mechanics, which can be used to identify possible

sites of stress singularity is, that it can take place at any

point or line where junction of three or more dissimilar

materials, or junction of two or more dissimilar

materials and ‘‘air’’ takes place. The well-known

examples of this kind: free edge of composite laminate

(singularities may take place at the lines on free surface

between two dissimilar layers), hole or opening in

composite laminate (as above, singularities at the lines

on free surface between two dissimilar layers), bonded

joints (singularities at the corner lines between adher-

end and adhesive, or between two dissimilar adherends

if thickness of adhesive layer is neglected), stiffened

panels (singularities at the corner lines between

dissimilar skin and stiffener), bolted joints (singulari-

ties at the contour lines among two dissimilar joined

materials and the bolt).

Now, looking back at simple models of Fig. 2, one

can easily recognize that there are several lines, where

three dissimilar materials come in contact. Specifically,

in Fig. 2a those are: ab, bc, cd, and da, where two

distinct fibers and matrix are in contact. And in Fig. 2b

those lines are: Ab, bc, cd, dA, Ae, ef, fg, gA, Ai, ij, jk,

and kA, where also two distinct fibers and matrix are in

contact. In the latter model, point ‘‘A’’ is of particular

interest, because four distinct materials (three orthog-

onal fibers and matrix) are in contact there. If one

could perform a rigorous singularity analysis for this

model, the results would likely show that point ‘‘A’’

corresponds to the highest order of singularity and,

accordingly, it should be treated as the point of most

probable initial failure of this composite. Unfortu-

nately, there are no analytical tools which would be

applicable to such 3-D elasticity problem, contrary to

the case of 2-D elasticity, where theory of complex

variables can be, and has been successfully applied to

the stress singularity analysis.

Fig. 3 Models of 2-D woven
(a), 2-D triaxial braided (b),
3-D woven (c) and 3-D
braided (d) fabric preforms
for composites
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Obviously, possible stress singularity lines and

points add another substantial complication to 3-D

solid mechanics analysis of textile composites. First,

those lines and points of singularity give sharp rise to

strains and stresses in respective sites of textile com-

posite, which may be difficult to capture with lower

order finite elements and/or coarse element meshes.

Secondly, stress/strain convergence can not be

achieved with the use of ‘‘regular’’ elements. One may

try using special ‘‘singular’’ finite elements (which

exist), but the order of singularity has to be assigned to

the element a priori; thus, another empirical parameter

would be involved in the analysis. Thirdly, it would be

impossible to perform initial or progressive failure

analysis using phenomenological failure criteria,

because ‘‘initial failure load’’ will be infinitesimal, in

accordance with the stresses being infinite.

Is it worth chasing such stress singularities in 3-D

elasticity analysis of textile composites for any practical

purpose? How to reasonably avoid or defeat them?

How to predict failure of textile composite using

different analysis approaches and computational tools

reviewed above? Does the multi-level hierarchical

analysis help to avoid stress singularities? Some of

these issues will be discussed later in the paper when

analyzing numerical results obtained for one specific

3-D woven composite Unit Cell.

Concluding remarks

In conclusion of the presented outlook at the history

and state-of-the-art in the area of modeling and anal-

ysis of textile composites and, specifically, 3-D woven

fabric composites, it has to be first emphasized that any

structural analysis problem for this class of composite

materials is very complex. No existing material model

and analysis tool can overcome all of the difficulties

and answer all of the questions. Especially when it is

required to predict progressive damage and failure,

ultimate failure loads, response to multi-axial loading,

sensitivity to stress raisers, impact and ballistic resis-

tance, probabilistic and stochastic effects caused by

random misalignment, waviness of the reinforcement,

and other manufacturing artifacts. OAM and MMM

are only applicable to predicting effective elastic

properties, besides the latter one can rigorously be

used only for orthogonally reinforced composites.

Various type 3-D finite element analysis tools are, of

course, much more capable, however simply using

some 3-D finite element from available commercial

package, even with a seemingly fine mesh, does not

guarantee adequacy and accuracy of numerical results.

Of course, usually hidden extrapolation and averaging

of input data and smoothing output stress/strain fields

between the elements can make an impression that

there are no difficulties or concerns whatsoever. Yet,

results provided by analysis may fail the comparison

with experimental data, which is the only true valida-

tion criterion. Particularly, finite element predictions of

failure, damage and fracture with the use of algorithms

that involve extrapolations and smoothing of input

and/or output data should be always taken with certain

suspicion.

In any case, it is highly advisable to validate any

numerical results obtained with generic commercial

finite element codes by experimental data and/or by

benchmark theoretical results provided by analysis

tools specialized for textile composites. It is believed

that 3-D Mosaic and Binary Model tools are the pri-

mary candidates to be used for generating such

benchmark data, due to all important aspects of

material models and computational algorithms in those

tools are transparent, can be thoroughly understood

and evaluated. Unfortunately, the amount of published

experimental data, especially for 3-D textile compos-

ites, is very limited.

This paper further describes essential aspects of 3-D

Mosaic model and variational analysis approach,

including 3-D stress/strain analysis, volumetric aver-

aging of stress/strain fields, computation of effective

elastic characteristics, and 3-D progressive failure

analysis that considers nine principal failure modes and

utilizes ultimate strain criteria.

Theoretical background of present 3-D Mosaic

approach

Generic Mosaic parallelepiped and its

discretization

Paper [74] provides all mathematical details of 3-D

variational analysis approach associated with generic

Mosaic parallelepiped of Fig. 1. As explained in Sec-

tion ‘‘Meso-volume’’ and ‘‘3-D Mosaic’’ concepts’’,

such parallelepiped can be composed of an arbitrary

number of homogeneous material bricks (meso-vol-

umes) in x, y and z directions; total number of material

bricks is L Æ M Æ N. Each of the bricks may have its

distinct mechanical properties characterized by 21

independent elastic constants in the case of general

anisotropy, 13 constants in the case of monoclinic

symmetry, 9 constants in the case of orthotropic sym-

metry, 5 constants in the case of monotropic (trans-

versely isotropic) symmetry, and 2 constants in the case

of isotropic material. All equations used in the analysis

J Mater Sci (2006) 41:6547–6590 6557

123



automatically apply to any specific case of anisotropy.

This feature allows including in the unified model such

materials as polymer matrices, adhesives, isotropic or

anisotropic fibers, unidirectional composites, 2-D

fabric composites, 3-D fabric composites, as well as

metals, wood, concrete, homogenized cores, and other

traditional and non-traditional structural materials.

The representation of given composite material or

structure in terms of this generic Mosaic parallelepiped

is the first necessary step of analysis. Each material

contained in composite structure of interest, and its

location within the structure, have to be put in corre-

spondence with one or more bricks in the Mosaic

parallelepiped. Of course, generic model of Fig. 1

includes numerous particular cases. Specifically, 3-D

Mosaic model of a laminated plate can be readily

obtained by assuming that all material bricks in each

‘‘Z-layer’’ have identical properties (i.e., material

properties are independent of the in-plane coordinates

x and y), while those properties change from one

Z-layer to the other in a step-wise manner. Further, in

accordance with original 3-D Mosaic model [61] some

of the bricks may be ‘‘dummy’’, meaning that they fill

empty spaces when developing Mosaic parallelepiped

model of some structural part. The following are

examples of some previously studied problems, where

addition of dummy material bricks was necessary:

plates with parallel or orthogonal sets of stiffeners [61],

double box-beam spar [65], various configurations of

adhesive lap joints [75–77], and composite patch repair

of metal or composite panel [78]. Of course, elastic

characteristics assigned to each dummy material brick

have to be carefully selected (relative to elastic prop-

erties of all other materials incorporated), in order to

make any effect of dummy material bricks on the

stress/strain fields negligible. Typically, isotropic dum-

my bricks with Young’s modulus 3–4 orders of mag-

nitude lower than the lowest modulus among all

‘‘physical’’ bricks would satisfy this condition. Such

lowest modulus may be Young’s modulus of polymer

matrix or adhesive, transverse modulus of unidirec-

tional composite, the lowest effective modulus of core

material, etc.

Next step of discretization used in 3-D Mosaic model

is not directly related to material properties of the

bricks, and its purpose is to establish computational

mesh of discrete elements that would provide sufficient

accuracy of numerical solution. In this step, each interval

ðxn; xnþ1Þ; ðyg; ygþ1Þ; ðzf; zfþ1Þ, where n ¼ 1; 2; . . . ;L;
g ¼ 1; 2; . . . ;M; f ¼ 1; 2; . . . ;N in accordance with

Fig. 1, is divided (uniformly or non-uniformly) into

some number of subintervals. It has to be mentioned that

selected mesh in x direction applies to all y-directional

and z-directional ‘‘layers’’. Analogously, selected mesh

in y direction applies to all x-directional and z-direc-

tional ‘‘layers’’, and selected mesh in z direction applies

to all x-directional and y-directional ‘‘layers’’. In the

result, Mosaic parallelepiped of Fig. 1 is represented as

an assemblage of a greater number of smaller parallel-

epipeds; their total number can vary from LÆ MÆ N (when

‘‘computational mesh’’ coincides with ‘‘material mesh’’)

to any higher number, depending on the computational

mesh density. A through notation of coordinates corre-

sponding to subinterval ends, xl; ym; zn is now intro-

duced, while the coordinates corresponding to the

interval ends are noted xn; yg; zf. In other words, sets of

integers fng; fgg and {f} (those play special role in the

analysis, as will be explained in Section ‘‘Displacement

and strain continuity conditions’’) form subsets of the

respective sets of integers {l}, {m} and {n}. Now we

visualize in Fig. 4 the basic computational discrete

element.

3-D displacement approximation

A 3-D displacement field in the qth discrete element is

represented in terms of the following triple series

(analogously to [60, 61, 74]):

uðqÞa ðx; y; zÞ ¼
XI

i¼0

XJ

j¼0

XK

k¼0

U
aðqÞ
ijk XiðxÞYjðyÞZkðzÞ ð1Þ

Here a =1, 2, 3; integers I, J and K define number of

d.o.f.; U
aðqÞ
ijk are undetermined coefficients; Xi (x), Yj (y)

and Zk (z) are three sets of basis functions, which can

be, generally, any appropriate sets of polynomials.

Total potential energy function of the qth discrete

element U(q) can be then written as follows:

UðqÞ ¼WðqÞ � PðqÞ ð2Þ

where W(q) is the work of external surface tractions

acting on the element, and P(q) is its total strain energy.

These energy components have been derived in the

following explicit form [74]:

Fig. 4 The basic discrete element used in 3-D Mosaic model
approach
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PðqÞ ¼ 1

2

XI

i¼0

XJ

j¼0

XK

k¼0

XI

p¼0

XJ

q¼0

XK

r¼0

X3

a¼1

X3

b¼1

U
bðqÞ
ijk a

abðqÞ
ijk;pqrU

aðqÞ
pqr ¼

1

2
UðqÞTAðqÞUðqÞ

ð3Þ

WðqÞ ¼
XI

i¼0

XJ

j¼0

XK

k¼0

X3

a¼1

U
aðqÞ
ijk Q

aðqÞ
ijk ¼ UðqÞTQðqÞ ð4Þ

Here, U(q) is vector of undetermined displacement

coefficients, A(q) is ‘‘stiffness matrix’’, and Q(q) is

vector of external surface tractions; their explicit

expressions can be found in [74]. After that the total

potential energy of the whole Mosaic parallelepiped is

written as the sum of all respective energies corre-

sponding to individual discrete elements (Q is their

total number):

U ¼W � P ¼
XQ

q¼1

WðqÞ � PðqÞ
h i

ð5Þ

To further proceed with algorithmic development, we

need to specify the form of basis functions Xi (x), Yj (y)

and Zk (z) in (1). Following [74], the basis functions

taken for the qth discrete element confined between

three orthogonal sets of parallel planes xl and xl+1, ym

and ym+1, zn and zn+1 are assumed in the form of

Bernstein approximation polynomials:

XiðxÞ ¼ BI
i ðxÞ ¼ I!

i!ðI�iÞ!
x�xl

xlþ1�xl

� �i
xlþ1�x
xlþ1�xl

� �I�i

for x 2 xl;xlþ1½ �
0 else

(

ð6Þ

YjðyÞ¼ BJ
j ðyÞ¼ J!

j!ðJ�jÞ!
y�ym

ymþ1�ym

� �j
ymþ1�y

ymþ1�ym

� �J�j

for y2 ym;ymþ1½ �
0 else

(

ð7Þ

ZkðzÞ¼ BK
k ðzÞ¼ K!

k!ðK�kÞ!
z�zn

znþ1�zn

� �k
znþ1�z
znþ1�zn

� �K�k

forz2 zn;znþ1½ �
0 else

(

ð8Þ

Integers l, m and n define location of all boundaries

between discrete elements.

Displacement and strain continuity conditions

Next steps in the algorithmic development are to

modify the total potential energy expression (5) by

imposing internal displacement continuity conditions

and external kinematic boundary conditions. With the

use of displacement representation (1) and basis

functions (6)–(8), the ‘‘perfect bonding’’ condition,

e.g., continuity of all three displacements between any

two discrete elements in the Mosaic body can be

expressed through the following set of relations [74]:

U
a;qðl;m;nÞ
Ijk ¼ U

a;qðlþ1;m;nÞ
0jk ; U

a;qðl;m;nÞ
iJk ¼ U

a;qðl;mþ1;nÞ
i0k ;

U
a;qðl;m;nÞ
ijK ¼ U

a;qðl;m;nþ1Þ
ij0

ð9Þ

External kinematic boundary conditions should be

stated for each specific boundary value problem and

imposed accordingly. Further details of the energy

modification by incorporating internal kinematic

boundary conditions (9) and some types of external

kinematic boundary conditions can be found in [74].

It should be noted that imposing displacement

continuity conditions (9) only does not ensure that the

computed strains and stresses will be continuous within

a homogeneous material brick (meso-volume). Addi-

tional analytical relations shall be included to satisfy

this requirement. As shown in [74], the following

equations ensure that all strain and stress components

are continuous within all homogeneous material bricks

in the Mosaic parallelepiped of Fig. 1:

U
a;qð�lþ1;m;nÞ
1jk ¼ x�lþ1 � x�l�1

x�l � x�l�1

U
a;qð�l;m;nÞ
Ijk � x�lþ1 � x�l

x�l � x�l�1

U
a;qð�l;m;nÞ
I�1jk ;

j ¼ 0; 1; . . .; J; k ¼ 0; 1; . . . ;K

ð10Þ

U
a;qðl; �mþ1;nÞ
i1k ¼ y �mþ1 � y �m�1

y �m � y �m�1
U

a;qðl; �m;nÞ
iJk � y �mþ1 � y �m

y �m � y �m�1
U

a;qðl; �m;nÞ
iJ�1k ;

i ¼ 0; 1; . . . ; I; k ¼ 0; 1; . . . ;K

ð11Þ

U
a;qðl;m;�nþ1Þ
ij1 ¼ z�nþ1 � z�n�1

z�n � z�n�1
U

a;qðl;m;�nÞ
ijK � z�nþ1 � z�n

z�n � z�n�1
U

a;qðl;m;�nÞ
ijK�1 ;

i ¼ 0; 1; . . . ; I; j ¼ 0; 1; . . . ; J

ð12Þ

Details of derivation and notations used in (10)–(12)

can be found in [74]. The use of indices �l; �m; �n in these

equations instead of indices l, m, n used in Eq. 9 has

principal meaning. This emphasizes, that Eqs. 10–12

should not be applied at the interfaces between dis-

similar material bricks. In other words, sets of integers

f�lg; f �mg; f�ng are obtained from the respective sets of

integers {l}, {m}, {n} by elimination of the subsets

fng; fgg; ffg. This feature of the developed analysis

approach allows calling it a ‘‘material-adaptive’’

approach. Numerical example presented in [74] have

illustrated that imposing Eqs. 10–12 in addition to

Eq. 9 eliminated all jumps of computed strains and

stresses within each homogeneous layer of a laminated

plate and also significantly improved overall accuracy
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of the solution without increasing degree of basis

functions or mesh density.

Crack propagation modeling

Another important feature of 3-D Mosaic analysis

approach is that it enables to solve 3-D stress/strain

problems in the presence of 2-D planar cracks between

any two discrete elements in Mosaic parallelepiped of

Fig. 1. Each individual crack is introduced by detach-

ing two adjacent discrete elements. Planes of the cracks

may be perpendicular to one of coordinate axes x, y or

z. Dimensions of ‘‘elementary’’ cracks perpendicular

to x, y and z-axis respectively, are ðymþ1 � ymÞ�
ðznþ1 � znÞ; ðxlþ1 � xlÞ � ðznþ1 � znÞ, and ðxlþ1 � xlÞ�
ðymþ1 � ymÞ in accordance with notations in Fig. 4.

From algorithmic viewpoint, detaching two adjacent

bricks means that certain equations are eliminated

from the full set of displacement continuity conditions

(9). The cracks can be located either within a homo-

geneous material brick (meso-volume) or between two

adjacent material bricks. Any number of cracks can be

imposed. The discrete elements can be detached in

one, two or three displacements simultaneously, by

selectively eliminating continuity conditions for ux, uy,

and/or uz. This allows one to model Fracture Modes I,

II and III.

Further, initial crack can be extended in one or two

in-plane directions for the other neighboring discrete

elements in the respective coordinate directions.

Hence, by sequential analysis runs one can model (a)

2-D planar crack growing in its plane, (b) crack ori-

entation change and further growth in one of the other

two orthogonal planes, and (c) branching of a single

crack into two or three cracks oriented in mutually

orthogonal planes. These opportunities provided by

the algorithm open the door to the crack growth

analysis; this only requires adding an appropriate crack

propagation criterion.

The crack propagation analysis approach has been

developed and implemented in the framework of 3-D

Mosaic model with the use of Critical Strain Energy

Release Rate Criterion (CSERRC) in [75–77]. It

appears that having all analytical tools described

above, this is a relatively simple task. The strain energy

of any discrete element can be evaluated from Eq. 3.

Then, the total strain energy of entire Mosaic paral-

lelepiped is expressed as P ¼
PQ

q¼1 PðqÞ, where Q is

total number of discrete elements in the Mosaic par-

allelepiped. This strain energy can be computed for the

initial state with no crack, P0, and for any number of

subsequent states, each characterized by its total strain

energy value: P1;P2; . . . Accordingly, the strain energy

release between two consecutive states are expressed

as DP1 ¼ P0 � P1;DP2 ¼ P1 � P2; . . . Simultaneously,

the growth of crack area is characterized by increments

DS1;DS2; . . . Then, the sought strain energy release

rates are defined as

R1 ¼
DP1

DS1
; R2 ¼

DP2

DS2
; . . . ; Rr ¼

DPr

DSr
; . . . ð13Þ

In each crack growth step the computed value Rr is

compared with its respective CSERRC denoted Rr
cr. If

Rr ‡ Rr
cr and the respective stress component(s) allow

for crack opening in Modes I, II or III, the crack gets

next increment at the load level applied. Contrary to

that, if Rc < Rcr
c , the crack will not grow at the given

load level. In the latter case the load can be increased,

and analysis continued in the iterative manner.

Following this algorithm, a propagation of any number

of cracks can be considered simultaneously, with their

possible growth paths in different planes having

mutually orthogonal orientations.

Other computational procedures

After all dependent variables have been eliminated

from the total potential energy function (5), as the

result of imposing all or the part of displacement

continuity conditions (9), strain continuity conditions

(10)–(12), and external geometric boundary conditions,

a Ritz-type procedure can be applied. This allows one

to derive a system of linear simultaneous equations

with respect to remaining undetermined coefficients

Ua;q
ijk . The system can be solved by applying standard

computational routines, resulting in numerical values

of all undetermined coefficients entering in the series

(1). After that the 3-D displacement, strain and stress

values at any point of Mosaic parallelepiped can be

computed by summation of their respective triple ser-

ies. Specifically, displacements are computed directly

from series (1), strains are computed from the series

obtained by substitution of (1) into strain–displace-

ment relations of linear elasticity, and stresses are

computed by substitution of strains into equations of

generalized Hooke’s law.

Summation of the respective triple series is per-

formed numerically, point-wise; the displacements,

strains and stresses can be computed for any combi-

nation of coordinates {x, y, z} belonging to Mosaic

parallelepiped. Special attention is paid to interfaces

between dissimilar materials, where certain strain and

stress components may be discontinuous. To show such

discontinuities explicitly, those discontinuous strains

and stresses have to be computed at two very close
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points within adjacent material bricks. Note that this

analysis approach does not require extrapolations to

Gaussian points, stress/strain averaging, or other usual

finite element post processing procedures. Particularly

remarkable, analytical expressions have been derived

in [74] for all integrals of Bernstein basis functions and

their derivatives involved in the equations defining

stiffness matrix AðqÞ; thus, even numerical evaluation

of those integrals is not used.

Relation to conventional 3-D hexahedral finite

element

The above description of 3-D Mosaic variational

analysis approach has probably made it obvious that its

mathematical formulation has many similarities with

3-D hexahedral finite element. For example, if the first

degree basis functions (I=J=K=1) are taken, see

Fig. 5a, the basic discrete element of Fig. 4 is degen-

erated into conventional first order hexahedral finite

element. However, when considering higher degree

Bernstein basis functions defined by (6)–(8) and shown

in Fig. 5b, c and d, the difference between them and

other special polynomials used in applied mathematics

and computation mechanics shows significant. Among

those other we can mention Lagrange, Hermite,

Bernoulli, Legendre, Laguerre, and Tschebyscheff

polynomials (information on them can be found, for

example, in [79]). Particularly, the principal difference

between Bernstein and Lagrange polynomials is that

the first ones are approximation polynomials, while the

second ones are interpolation polynomials. This means

that Bernstein polynomials of any degree do not

oscillate between the interval ends, as seen in Fig. 5,

while Lagrange polynomials have increasing number of

internal nodes within the interval when degree of the

polynomials grows. Accordingly, Bernstein basis func-

tions always define an 8-noded element (shown in

Fig. 4), independently of the polynomial degree.

There are several important mathematical and

computational advantages provided by Bernstein

polynomials vs. other polynomial types:

(i) Bernstein polynomials of higher degree provide

much better computational stability than their

Lagrange counterparts (this is valid for all

approximation vs. interpolation polynomials).

Fig. 5 Bernstein polynomials in [0, 1] interval for degrees 1 (a), 2 (b), 4 (c) and 8 (d)
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(ii) Bernstein polynomials yield ‘‘smooth approxi-

mation’’, which means that if the approximated

function is differentiable, then the convergence

(with increasing polynomial degree) is ensured

not only for approximated function, but also for

its derivatives. This is a very important advan-

tage versus other modes of approximation, like

Tschebyscheff polynomials or best uniform

approximation, see [79]. When applying this

property to the problems of our interest, we can

thus ensure that convergence of strains and

stresses within homogeneous material bricks

will be achieved by increasing degree of Bern-

stein basis functions.

(iii) External boundary condition of uniformly dis-

tributed displacement over some surface ele-

ment can be imposed analytically and exactly

satisfied in the analysis, see [74].

(iv) A relatively simple form of Bernstein polyno-

mials (6)–(8) allowed this author to derive all of

the necessary mathematical algorithms in

closed analytical form [74].

(v) The described 3-D variational analysis ap-

proach with displacement representation in

terms of triple series (1) and Bernstein basis

functions (6)–(8) can be re-formulated in con-

ventional terms of 3-D hexahedral finite ele-

ment, see [74]. For that, the primary

displacement approximation (1) can be first re-

written in the following equivalent form:

uðqÞa ðx; y; zÞ ¼
XF

f¼1

U
aðqÞ
f Nf ðx; y; zÞ; a ¼ 1; 2; 3 ð14Þ

where

Nf ðx; y; zÞ ¼ Nijkðx; y; zÞ ¼ BI
i ðxÞBJ

j ðyÞBK
k ðzÞ ð15Þ

f ¼ f ði; j; kÞ ¼ ðkþ 1Þ þ jðK þ 1Þ þ iðJ þ 1ÞðK þ 1Þ ð16Þ

F ¼ ðI þ 1ÞðJ þ 1ÞðK þ 1Þ ð17Þ

It is easy to verify that Bernstein basis functions (6)–(8)

provide the following properties to the ‘‘shape func-

tions’’ (15):

N1ðxl;ym;znÞ¼1;
NKþ1ðxl;ym;znþ1Þ¼1;
N1þJðKþ1Þðxl;ymþ1;znÞ¼1;
NðJþ1ÞðKþ1Þðxl;ymþ1;znþ1Þ¼1;
N1þIðJþ1ÞðKþ1Þðxlþ1;ym;znÞ¼1;
NðKþ1Þ 1þIðJþ1Þ½ �ðxlþ1;ym;znþ1Þ¼1;
N1þðKþ1Þ JþIðJþ1Þ½ �ðxlþ1;ymþ1;znÞ¼1;
NðIþ1ÞðJþ1ÞðKþ1Þðxlþ1;ymþ1;znþ1Þ¼1

ð18Þ

For each of the above eight combinations of the

coordinate triads in Eq. 18 (those combinations cor-

respond to eight corners A, B, C, D, E, F, G and H of

discrete element shown in Fig. 4), all shape functions

Nf other than the ones listed in (18) take zero values.

Therefore, Eqs. 14–18 supplemented by (6)–(8) define

an arbitrary order hexahedral finite element, which is

compatible with any other 3-D finite element meth-

odology. At the same time, as was explained above,

this element has its distinct features.

Volumetric averaging of stress/strain fields in 3-D

Mosaic structures

The 3-D Mosaic model and computational approach

described in Section ‘‘Theoretical background of

present 3-D Mosaic approach’’ can be directly applied

to predicting effective elastic properties of various type

composite materials based on their 3-D microme-

chanics stress/strain analysis results. Considering again

generic Mosaic parallelepiped shown in Fig. 1, we can

conduct several ‘‘computational experiments’’ which

will allow us to obtain nine independent effective

elastic characteristics of homogenized orthotropic

material. The algorithms applicable to more general

cases of anisotropy can be developed analogously. We

start here with deriving algorithm for the case of

applied displacements (strains), then will address the

case of applied surface tractions (stresses).

Effective elastic properties under applied strains

Consider the case of applied displacements, for which

the respective ‘‘applied’’ strains can be calculated as

applied displacement divided over the length of Mosaic

parallelepiped in the corresponding loading direction.

The following nine computational experiments can be

conducted with some uniformly distributed displace-

ment component at the loaded surface in each case (a,

b and c are dimensions of Mosaic parallelepiped in x, y

and z directions, respectively):

(i) Symmetric loading in x direction with applied

displacement u0
x (normal strain e0

x ¼ u0
x=aÞ.

(ii) Symmetric loading in y direction with applied

displacement u0
y (normal strain e0

y ¼ u0
y=bÞ.

(iii) Symmetric loading in z direction with applied

displacement u0
z (normal strain e0

z ¼ u0
z=cÞ.

(iv) Uniformly distributed tangential displacement

u0
x applied in opposite directions to the opposite

sides of the parallelepiped perpendicular to axis

y; the applied shear strain is exy
0 =2ux

0/b.
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(v) Same as in (iv) but for displacement u0
y applied

to the sides which are perpendicular to axis x;

the applied shear strain is e0
yx ¼ 2u0

y=a.

(vi) Same as in (iv) but for displacement u0
x applied

to the sides which are perpendicular to axis z;

the applied shear strain is e0
xz ¼ 2u0

x=c.

(vii) Same as in (iv) but for displacement u0
z applied

to the sides which are perpendicular to axis x;

the applied shear strain is e0
zx ¼ 2u0

z=a.

(viii) Same as in (iv) but for displacement u0
y applied

to the sides which are perpendicular to axis z;

the applied shear strain is e0
yz ¼ 2u0

z=c.

(ix) Same as in (iv) but for displacement u0
z applied

to the sides which are perpendicular to axis y;

the applied shear strain is e0
yz ¼ 2u0

z=b.

In the case of orthotropic materials, the normal

stress/strain components are separated from the shear

ones. Accordingly, the group of computational experi-

ments (i)–(iii) is independent from the group (iv)–(ix).

Moreover, due to each pair of shear stress/strain com-

ponents is not related to the other two pairs, the three

groups of two computational experiments (iv), (v); (vi),

(vii); and (viii), (ix) are independent. Also, within each

of these three groups, the pairs of computational

experiments (iv) and (v), (vi) and (vii), (viii) and (ix)

shall, theoretically, provide identical results for effec-

tive shear moduli. However, due to various possible

computational inaccuracies this may not be achieved. In

such situation it is advisable to compute all six effective

shear moduli from respective six computational exper-

iments, then compare results, and calculate mean values

for each of the three pairs; the resulting three values

have to be taken as effective shear moduli.

The nine values of applied strains are known from

the imposed boundary conditions described above.

Then, by using 3-D Mosaic analysis approach, the

remaining stress/strain components are computed in

each case. After that, computational averaging of those

stress/strain components is performed in all three

coordinates throughout 3-D Mosaic parallelepiped.

The density of rendering points can be methodically

increased until it does not affect the averaging results.

This procedure yields the following averaged strain

and stress components:

In case (i): ex
y

D E
; ex

z

� �
; rx

x

� �
; rx

y

D E
; rx

z

� �

In case (ii): ey
x

� �
; ey

z

� �
; ry

x

� �
; ry

y

D E
; ry

z

� �

In case (iii): ez
x

� �
; ez

y

D E
; rz

x

� �
; rz

y

D E
; rz

z

� �

In case (iv): rxy

� �

In case (v): ryx

� �

In case (vi): rxzh i
In case (vii): rzxh i

In case (viii): ryz

� �

In case (ix): rzy

� �

In above normal strains and stresses the superscript

indicates ‘‘loading’’ direction, while the subscript indi-

cates direction of ‘‘measured response’’. In above shear

stresses first subscript corresponds to the loading

direction while the second to the measured response

direction.

The applied and the computed averaged normal

strains and stresses are related through Hooke’s law for

orthotropic material written below in the following

matrix form:

E
_

� ~C ¼~S ð19Þ

where stress vector ~S, strain matrix E
_

, and vector of

unknown effective material stiffness components ~C are

defined as following

~S ¼

rx
x

� �

rx
y

D E

rx
z

� �

ry
x

� �

ry
y

D E

ry
z

� �

rz
x

� �

rz
y

D E

rz
z

� �

2

66666666666666664

3

77777777777777775

; E
_

¼

e0
x ex

y

D E
ex

z

� �
0 0 0 0 0 0

0 0 0 e0
x ex

y

D E
ex

z

� �
0 0 0

0 0 0 0 0 0 e0
x ex

y

D E
ex

z

� �

ey
x

� �
e0

y ey
z

� �
0 0 0 0 0 0

0 0 0 ey
x

� �
e0

y ey
z

� �
0 0 0

0 0 0 0 0 0 ey
x

� �
e0

y ey
z

� �

ez
x

� �
ez

y

D E
e0

z 0 0 0 0 0 0

0 0 0 ez
x

� �
ez

y

D E
e0

z 0 0 0

0 0 0 0 0 0 ez
x

� �
ez

y

D E
e0

z

2
666666666666666666664

3
777777777777777777775

; ~C ¼

C11h i
C12h i
C13h i
C21h i
C22h i
C23h i
C31h i
C32h i
C33h i

2

6666666666664

3

7777777777775

ð20Þ
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After multiplying Eq. 19 by inverse matrix Ê�1 it is

obtained

~C ¼ E
_�1

�~S ð21Þ

This equation allows one to compute nine compo-

nents of vector ~C. For convenience of further manip-

ulations we arrange them in equivalent 3·3 matrix

form

Ĉ ¼
C11h i C12h i C13h i
C21h i C22h i C23h i
C31h i C32h i C33h i

0

@

1

A ð22Þ

and then obtain the respective matrix of effective

compliances

Â ¼ Ĉ�1 ¼
A11h i A12h i A13h i
A21h i A22h i A23h i
A31h i A32h i A33h i

0
@

1
A ð23Þ

From the nine effective compliance components

above we can further derive nine effective engineering

constants:

E1h i ¼ 1

A11h i ; E2h i ¼ 1

A22h i ; E3h i ¼ 1

A33h i ð24Þ

m12h i ¼ � A21h i
A11h i ; m13h i ¼ � A31h i

A11h i ; m23h i ¼ � A32h i
A22h i ;

m21h i ¼ � A12h i
A22h i ; m31h i ¼ � A13h i

A33h i ; m32h i ¼ � A23h i
A33h i ð25Þ

Theoretically, nine effective engineering constants

should satisfy the reciprocity equations

E1h i m21h i¼ E2h i m12h i; E1h i m31h i¼ E3h i m13h i; E2h i m32h i¼ E3h i m23h i
ð26Þ

however in a view of inevitable computational inac-

curacies, they may not be satisfied exactly. If so, one

can compute all six Poisson’s ratios from (25),

substitute them into (26) and check discrepancy

between the right and left sides. The result can be

used as the accuracy indicator of performed analysis.

Then, the following symmetric compliance matrix can

be defined:

Â ¼
A11h i A12h iþ A21h i

2
A13h iþ A31h i

2
A21h iþ A12h i

2 A22h i A23h iþ A32h i
2

A31h iþ A13h i
2

A32h iþ A23h i
2 A33h i

0
B@

1
CA ð27Þ

and respective Poisson’s ratios can be determined from

the equations

m12h i ¼ � A21h i þ A12h i
2 A11h i ; m13h i ¼ � A31h i þ A13h i

2 A11h i ;

m23h i ¼ � A32h i þ A23h i
2 A22h i

m21h i ¼ � A12h i þ A21h i
2 A22h i ; m31h i ¼ � A13h i þ A31h i

2 A33h i ;

m32h i ¼ � A23h i þ A32h i
2 A33h i

ð28Þ

In this case the reciprocity conditions (25) will be

satisfied exactly.

Further, in order to compute effective shear moduli,

we relate applied shear strains to volumetrically aver-

aged shear stresses obtained from six computational

experiments (iv)–(ix):

rxy

� �
¼ G12h ie0

xy; ryx

� �
¼ G21h ie0

yx; rxzh i ¼ G13h ie0
xz;

rzxh i ¼ G31h ie0
zx; ryz

� �
¼ G23h ie0

yz; rzy

� �
¼ G32h ie0

zy

ð29Þ

The respective effective shear moduli are then

obtained as follows:

G12h i ¼
rxy

� �

e0
xy

; G21h i ¼
ryx

� �

e0
yx

; G13h i ¼ rxzh i
e0

xz

;

G31h i ¼ rzxh i
e0

zx

; G23h i ¼
ryz

� �

e0
yz

; G32h i ¼
rzy

� �

e0
zy

ð30Þ

Of course, theoretically the following pairs of shear

moduli have to be identical

G21h i ¼ G12h i; G31h i ¼ G13h i; G32h i ¼ G23h i ð31Þ

However, computational inaccuracies may result in

certain discrepancies between the right and left hand

sides of (31). The following mean values can be

adopted in such case:

G6h i ¼ G12h i þ G21h i
2

; G5h i ¼ G13h i þ G31h i
2

;

G4h i ¼ G23h i þ G32h i
2

ð32Þ

Effective elastic properties under applied stresses

In the case of applied surface tractions (in the context of

this theoretical development they can also be termed

‘‘stresses’’) we also perform nine computational

‘‘experiments’’, similar to the ones (i)–(ix) described in

Section ‘‘Effective elastic properties under applied

strains’’. For this purpose we just have to replace strains
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with stresses and vice versa. In all nine computational

experiments the applied stresses are assumed uniformly

distributed over the respective sides of Mosaic paral-

lelepiped. The following notations are used to denote

applied stresses: rx
0 in case (I), ry

0 in case (II), rz
0 in case

(III), rxy
0 in case (IV), ryx

0 in case (V), rxz
0 in case (VI),

rzx
0 in case (VII), ryz

0 in case (VIII), and rzy
0 in case (IX).

The computed and then volumetrically averaged

stresses and strains are denoted:

In case (I): rx
y

D E
; rx

z

� �
; ex

x

� �
; ex

y

D E
; ex

z

� �

In case (II): ry
x

� �
; ry

z

� �
; ey

x

� �
; ey

y

D E
; ey

z

� �

In case (III): rz
x

� �
; rz

y

D E
; ez

x

� �
; ez

y

D E
; ez

z

� �

In case (IV): exy

� �

In case (V): eyx

� �

In case (VI): exzh i
In case (VII): ezxh i
In case (VIII): eyz

� �

In case (IX): ezy

� �

For normal strains and stresses above, the super-

script indicates ‘‘loading’’ direction, while the subscript

indicates direction of ‘‘measured response’’. For shear

strains above, first subscript corresponds to the loading

direction while the second corresponds to the mea-

sured response direction. The applied and the mea-

sured normal stresses and strains are related through

Hooke’s law for orthotropic material written in the

following matrix form:

Ŝ � ~A ¼ ~E ð33Þ

Here, the following strain vector, stress matrix, and

effective compliance vector are introdused:

By multiplying Eq. 33 with matrix Ŝ�1, we obtain the

following equation for the vector of effective compli-

ances:

~A ¼ Ŝ�1 � ~E ð35Þ

Then this vector is written in the form of 3·3 matrix

Â ¼
A11h i A12h i A13h i
A21h i A22h i A23h i
A31h i A32h i A33h i

0
@

1
A ð36Þ

which yields effective engineering constants (24)–(25).

If the computed matrix (36) is not exactly symmetric

we can, analogously to the case of applied strains (see

Section ‘‘Effective elastic properties under applied

strains’’) derive symmetric matrix in the form (27)

and then apply same equations for Poisson’s ratios

(28).

Further, analogously with Section ‘‘Effective elastic

properties under applied strains’’, we relate applied

shear stresses to volumetrically averaged shear strains,

obtained from six computational experiments (IV)–

(IX). The following expressions are then obtained for

effective shear moduli:

G12h i ¼
r0

xy

exy

� � ; G21h i ¼
r0

yx

eyx

� � ; G13h i ¼
r0

xz

exzh i ;

G31h i ¼
r0

zx

ezxh i ; G23h i ¼
r0

yz

eyz

� � ; G32h i ¼
r0

zy

ezy

� �
ð37Þ

Like in the case of applied displacements, the pairs

of computed effective shear moduli G12h i and

G21h i; G13h i and G31h i; G23h i and G32h i may not be

identical due to computational inaccuracies. Their

mean values defined by Eq. 32 can be obtained in this

case and used in applications.
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Progressive failure analysis using 3-D Mosaic model

Failure modes and elastic property modification

scheme

Consider again generic Mosaic parallelepiped shown in

Fig. 1, now for the purpose of developing progressive

failure analysis algorithm. Following the concept of

Continuum Damage Mechanics, each homogeneous

brick (meso-volume) is characterized by its ‘‘initial’’

elastic properties corresponding to undamaged state of

the material, and a sequence of ‘‘damaged’’ states, each

characterized by discounted elastic properties which

are related to specific failure mode and to extent of

imparted gradual damage. In the analysis approach

adopted here, each brick in the Mosaic parallelepiped

is assumed orthotropic in its principal axes of material

symmetry (denoted 1, 2 and 3), though it can belong to

more general cases of anisotropy in the global coordi-

nate axes of Mosaic parallelepiped (denoted x, y and

z). Accordingly, nine failure modes of each brick are

taken into account, and the occurrence of each failure

event is determined by a simple and mechanistically

validated ultimate strain failure criterion. Failure

analysis of each individual brick is performed in its

local principal axes of symmetry. Table 1 describes the

adopted failure modes and failure criteria accounted in

the analysis, and also provides elastic property discount

scheme.

If necessary, other suitable phenomenological

failure criteria can be incorporated into the devel-

oped progressive failure analysis algorithm and

computer code without any difficulty. In particular,

the popular tensor-polynomial type failure criteria or

Hashin’s failure conditions can replace some of the

currently used ultimate strain failure conditions.

However, any complication of the analysis should be

justified by experimental results. If intending to apply

a more complex failure criterion than the ultimate

strain, one has to keep in mind that there is a lot of

experimental information on failure strain values for

various fibers, matrices and unidirectional composites

in the literature. At the same time, experimental

data for ‘‘interactive term coefficients’’, which are

contained in quadratic and other higher order failure

criteria, are very rare and applicable to some specific

composites only. Such data can be only obtained

from biaxial loading tests which are complex,

expensive and require special testing machines, fix-

tures, and unique specimen geometries. Therefore,

Table 1 Failure modes, failure conditions, and elastic property discount scheme

Mode
no.

Failure
type

Failure
dir. or
plane

Ultimate
strain

Failure
criteria

Modified
Young’s
moduli

Modified
Poisson’s
ratios

Modified
shear
moduli

1 T 1 eðqÞT1 eðqÞ1 � eðqÞT1
~E
ðqÞ
1 ¼ aðqÞ1 E

ðqÞ
1 ~mðqÞ21 ¼ mðqÞ21 =a

ðqÞ
1

~G
ðqÞ
4 ¼ gðqÞ1 G

ðqÞ
4

~mðqÞ31 ¼ mðqÞ31 =a
ðqÞ
1

2 T 2 eðqÞT2 eðqÞ2 � eðqÞT2
~E
ðqÞ
2 ¼ aðqÞ2 E

ðqÞ
2 ~mðqÞ12 ¼ mðqÞ12 =a

ðqÞ
2

~G
ðqÞ
5 ¼ gðqÞ2 G

ðqÞ
5

~mðqÞ32 ¼ mðqÞ32 =a
ðqÞ
2

3 T 3 eðqÞT3 eðqÞ3 � eðqÞT3
~E
ðqÞ
3 ¼ aðqÞ3 E

ðqÞ
3 ~mðqÞ13 ¼ mðqÞ13 =a

ðqÞ
3

~G
ðqÞ
6 ¼ gðqÞ3 G

ðqÞ
6

~mðqÞ23 ¼ mðqÞ23 =a
ðqÞ
3

4 C 1 eðqÞC1 �eðqÞ1 � eðqÞC1
~E
ðqÞ
1 ¼ bðqÞ1 E

ðqÞ
1 ~mðqÞ21 ¼ mðqÞ21 =b

ðqÞ
1

~G
ðqÞ
4 ¼ uðqÞ1 G

ðqÞ
4

~mðqÞ31 ¼ mðqÞ31 =b
ðqÞ
1

5 C 2 eðqÞC2 �eðqÞ2 � eðqÞC2
~E
ðqÞ
2 ¼ bðqÞ2 E

ðqÞ
2 ~mðqÞ12 ¼ mðqÞ12 =b

ðqÞ
2

~G
ðqÞ
5 ¼ uðqÞ2 G

ðqÞ
5

~mðqÞ32 ¼ mðqÞ32 =b
ðqÞ
2

6 C 3 eðqÞC3 �eðqÞ3 � eðqÞC3
~E
ðqÞ
3 ¼ bðqÞ3 E

ðqÞ
3 ~mðqÞ13 ¼ mðqÞ13 =b

ðqÞ
3

~G
ðqÞ
6 ¼ uðqÞ3 G

ðqÞ
6

~mðqÞ23 ¼ mðqÞ23 =b
ðqÞ
3

7 S 2–3 eðqÞS4 eðqÞ4

���
��� � eðqÞS4

~E
ðqÞ
1 ¼ vðqÞ1 E

ðqÞ
1 ~mðqÞ21 ¼ mðqÞ21 =v

ðqÞ
1

~G
ðqÞ
4 ¼ cðqÞ1 G

ðqÞ
4

~mðqÞ31 ¼ mðqÞ31 =v
ðqÞ
1

8 S 1–3 eðqÞS5 eðqÞ5

���
��� � eðqÞS5

~E
ðqÞ
2 ¼ vðqÞ2 E

ðqÞ
2 ~mðqÞ12 ¼ mðqÞ12 =v

ðqÞ
2

~G
ðqÞ
5 ¼ cðqÞ2 G

ðqÞ
5

~mðqÞ32 ¼ mðqÞ32 =v
ðqÞ
2

9 S 1–2 eðqÞS6 eðqÞ6

���
��� � eðqÞS6

~E
ðqÞ
3 ¼ vðqÞ3 E

ðqÞ
3 ~mðqÞ13 ¼ mðqÞ13 =v

ðqÞ
3

~G
ðqÞ
6 ¼ cðqÞ3 G

ðqÞ
6

~mðqÞ23 ¼ mðqÞ23 =v
ðqÞ
3

Note: ‘‘T’’ stands for tension, ‘‘C’’ for compression, and ‘‘S’’ for shear.
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even having one of those failure criteria incorporated

in structural analysis code does mean that it will

become a practical tool.

Some additional explanations of Table 1 would be

in place. First, superscript q identifies sequential

number of homogeneous material element, which

elastic properties are discounted in the given step of

gradual failure process. This can have two different

meanings: it may correspond to a discrete element

(see Fig. 4) determined by the chosen computational

mesh, or it may correspond to a material brick

(meso-volume) in Mosaic parallelepiped of Fig. 1.

The first case is, obviously, more general, because it

allows one to model gradual failure within each

homogeneous material brick. However, its realization

consistent with the general methodology adopted here

is not simple. Indeed, after discounting elastic prop-

erties of some discrete element within meso-volume, a

new, smaller meso-volume within the original one

would be created. Accordingly, after that we have to

change the primary division of Mosaic parallelepiped

into material bricks, in order to account for the

presence of this new meso-volume. This procedure

has to be repeated after each consecutive failure of

discrete elements. The computer implementations of

such process is possible, but algorithmically complex,

and may result in significant increase of the analysis

time.

On the other hand, if superscript q used in Table 1 is

assumed identical with superscript s used for notation

of material bricks (meso-volumes), the failure occur-

rence at any point of the material brick would result in

discounting its respective elastic properties. In this case

the original meso-volume mesh would not be changed

during entire progressive failure process. This ap-

proach is much easier for computer code realization,

but may be too severe in discounting elastic properties

and, accordingly, too conservative in predicting ulti-

mate failure load.

One possible compromise to be explored here is to

make addition to the algorithm which will partially

discount properties of the whole meso-volume with

account for the volume fraction of the failed discrete

element. For example, if failure Mode 1 is realized in

discrete element q having volume V(q), and this dis-

crete element belongs to brick s having volume V(s),

then instead of using the discounting rules ~E
ðqÞ
1 ¼

aðqÞ1 E
ðqÞ
1 or ~E

ðsÞ
1 ¼ aðsÞ1 E

ðsÞ
1 , the following is applied:

~E
ðsÞ
1 ¼ E

ðsÞ
1 1� 1� aðsÞ1

� �
VðqÞ=VðsÞ

h i
¼ âðsÞ1 E

ðsÞ
1 . If using

this approach, the original discount coefficients

aðsÞk ; bðsÞk ; vðsÞk ; gðsÞk ;uðsÞk and cðsÞk ðk ¼ 1; 2; 3Þ have to be

replaced by

âðsÞk ¼ 1� 1� aðsÞk

� �
VðqÞ=VðsÞ; b̂ðsÞk ¼ 1� 1� bðsÞk

� �
VðqÞ=VðsÞ;

v̂ðsÞk ¼ 1� 1� vðsÞk

� �
VðqÞ=VðsÞ;

ĝðsÞk ¼ 1� 1� gðsÞk

� �
VðqÞ=VðsÞ; ûðsÞk ¼ 1� 1�uðsÞk

� �
VðqÞ=VðsÞ;

ĉðsÞk ¼ 1� 1� cðsÞk

� �
VðqÞ=VðsÞ

ð38Þ

If VðqÞ ¼ VðsÞ, Eqs. 38 yield âðsÞk ¼ aðsÞk ; b̂ðsÞk ¼ bðsÞk ;

v̂ðsÞk ¼ vðsÞk ; ĝðsÞk ¼ gðsÞk ; ûðsÞk ¼ uðsÞk and ĉðsÞk ¼ cðsÞk . Table 2

illustrates numerical values obtained from (38) for

some combinations of aðsÞk and VðqÞ=VðsÞ. Reasonably,

the smaller the volume fraction of discrete element in

its meso-volume, the lesser the effect of its modulus

discount on overall decrease of the meso-volume

modulus.

Though the proposed ‘‘intermediate’’ approach has

no mechanistic substantiation, its logics is right and its

implementation in computer code is very simple, be-

cause it only requires to add computation of VðqÞ=VðsÞ

for all discrete elements and then calculate

âðsÞk ; b̂ðsÞk ; v̂ðsÞk ; ĝðsÞk ; ûðsÞk and ĉðsÞk from Eqs. 38. And no new

empirical parameters are added to the analysis scheme.

Those remain the original discount coefficients

aðsÞk ; bðsÞk ; vðsÞk ; gðsÞk ;uðsÞk and cðsÞk , which can be obtained

either from correlations between analysis results and

experimental data, or from a lower level fracture

mechanics analysis. The latter one usually relates these

coefficients to the orientation, size and spacing of

certain arrays of microcracks/damage imparted in a

homogeneous meso-volume under specified load. Both

ways have been extensively studied in literature on

Continuum Damage Mechanics, which accumulated

knowledge will be implemented in further develop-

ments of progressive failure models and algorithms

within 3-D Mosaic approach.

While the discount scheme for Young’s moduli

adopted in Table 1 and explained above is intuitively

Table 2 Numerical values of âðsÞk for different combinations of
aðsÞk and VðqÞ=VðsÞ

aðsÞk âðsÞk

VðqÞ=VðsÞ ¼ 0:9 VðqÞ=VðsÞ ¼ 0:5 VðqÞ=VðsÞ ¼ 0:1

0.1 0.19 0.55 0.91
0.2 0.28 0.6 0.92
0.3 0.37 0.65 0.93
0.4 0.46 0.7 0.94
0.5 0.55 0.75 0.95
0.6 0.64 0.8 0.96
0.7 0.73 0.85 0.97
0.8 0.82 0.9 0.98
0.9 0.91 0.95 0.99
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clear and usually not argued, the discount schemes for

Poisson’s ratios and shear moduli are by far less obvi-

ous. The logics used here is, that damaged discrete

element, which may contain fiber, matrix, homoge-

nized composite, etc., is still treated as a homogeneous

orthotropic solid. Accordingly, all equations of

solid mechanics apply; this includes the reciprocity

relations between Young’s moduli and Poisson’s

ratios: E
ðqÞ
1 mðqÞ21 ¼ E

ðqÞ
2 mðqÞ12 ; E

ðqÞ
1 mðqÞ31 ¼ E

ðqÞ
3 mðqÞ13 , and

E
ðqÞ
2 mðqÞ32 ¼ E

ðqÞ
3 mðqÞ23 . After some Young’s modulus, E

ðqÞ
1

for example, is multiplied by its discount coefficient

aðqÞ1 , the respective Poisson’s ratios mðqÞ21 and mðqÞ31 have to

be divided over the same discount coefficient in order

to keep the reciprocity equations valid. One can verify

that for all possible discounting cases of Young’s

moduli and Poisson’s ratios in Table 1, the reciprocity

equations are not violated. Note that when elastic

modulus is reduced, the respective two Poisson’s ratios

are increased.

The above seemingly formal logics can be substan-

tiated by a reasonable mechanistic interpretation.

Indeed, the reduction of Young’s modulus E
ðqÞ
1 , for

example, can be interpreted as the result of formation

of some array of microcracks/damage in plane 2-3. By

their definition, Poisson’s ratios mðqÞ21 and mðqÞ31 charac-

terize material deformation in direction 1 when mate-

rial is loaded in directions 2 and 3, respectively. So, the

larger these Poisson’s ratios are, the greater material

deformation in direction 1 is. And, obviously, crack/

damage formation in material plane 2-3 increases

material compliance and, respectively, its deformation

in direction 1. Thus, the modification scheme for

Poisson’s ratios in Table 1 is in a full agreement with

this mechanistic interpretation.

The above mechanistic interpretation can also be

used to explain the relations between discounting

schemes for Young’s moduli and shear moduli in

Table 1. It seems obvious that crack/damage formation

in plane 2-3 results in reduction of E
ðqÞ
1 and, at the

same time, in reduction of shear modulus in that plane,

G
ðqÞ
4 . Analogously, crack/damage formation in plane 1-

3 or plane 1-2 results in reduction of E
ðqÞ
2 or E

ðqÞ
3 and,

at the same time, in reduction of G
ðqÞ
5 or G

ðqÞ
6 ,

respectively. So, intuitively the pairs of discount coef-

ficients aðqÞk and gðqÞk ; bðqÞk and uðqÞk ; vðqÞk and cðqÞk are

implicitly related via common micromechanical

mechanisms of crack/damage formation. Yet, this

problem has not been well addressed in the literature.

Due to that, in current version of 3-D Mosaic pro-

gressive failure analysis all of the discount coefficients

in Table 1 are treated as formally independent input

parameters.

Principal steps of the computational algorithm

Next we describe principal steps of the developed

computational algorithm for progressive failure analy-

sis, with account for the nine failure modes described

in Table 1, and with respective modifications of the

elastic characteristics.

Step 1. Run 3-D Mosaic analysis with some arbitrary

magnitude of applied load, say P0, or applied dis-

placement, say U0. A set of rendering points fx; y; zg is

selected by choosing number of intervals in x, y and z

directions of the Mosaic structure. Strains are com-

puted at those points.

Step 2. All of the computed strains are normalized

over their respective ultimate values taken from input

data for each individual brick in Mosaic parallelepiped.

Of course, the normalization factors are different for

distinct material bricks and even for the same material

bricks having different orientation with respect to glo-

bal axes x, y and z. Besides, the normalization factors

may be different for the same material in same direction

when exposed to tensile versus compressive stress. This

step is performed for all points selected in Step 1. As the

result, for each normalized (positive, negative or shear)

strain component the largest magnitude is determined

and further termed ‘‘failure strain indicator’’. Now, we

have nine such indicators computed:

RT
1 ¼

e
ðq1Þ
1
ð~x;~y;~zÞ

e
ðq1 ÞT
1

; RT
2 ¼

e
ðq2Þ
2
ð~x;~y;~zÞ

e
ðq2ÞT
2

; RT
3 ¼

e
ðq3Þ
3
ð~x;~y;~zÞ

e
ðq3ÞT
3

;

RC
1 ¼

e
ðq4Þ
1
ð~x;~y;~zÞ

e
ðq4 ÞC
1

; RC
2 ¼

e
ðq5Þ
1
ð~x;~y;~zÞ

e
ðq5ÞC
2

; RC
3 ¼

e
ðq6 Þ
3
ð~x;~y;~zÞ

e
ðq6ÞC
3

;

RS
4 ¼

e
ðq7 Þ
23
ð~x;~y;~zÞ

�� ��
e
ðq7 ÞS
4

; RS
5 ¼

e
ðq8Þ
13
ð~x;~y;~zÞ

�� ��
e
ðq8ÞS
5

; RS
6 ¼

e
ðq9Þ
23
ð~x;~y;~zÞ

�� ��
e
ðq9ÞS
6

ð39Þ

By using different superscripts q1; . . .; q9 in above

equations we emphasize that each of the nine left hand

side values may be reached in different discreet ele-

ments. The largest among these nine failure strain

indicators is then determined and shown in the post-

processor window together with the following charac-

teristics of the first failure occurrence: three failure

point coordinates ~x; ~y; ~z, three integers l;m; nf g iden-

tifying the corresponding material brick (meso-vol-

ume), the failure mode (‘‘T’’, ‘‘C’’, or ‘‘S’’), the axis

index (1, 2 or 3) for tensile and compressive failures, or

the plane index (23, 31, or 12) for shear failure.

Step 3. The applied load P0 or applied displacement

U0 magnitude under which the first analysis has been run

is normalized over the largest among all computed fail-

ure strain indicators (39). The obtained load magnitude

PF
1 constitutes ‘‘first failure load’’, or the displacement

magnitude UF
1 constitutes ‘‘first failure displacement’’.
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Step 4. Knowing the first failure occurrence mode

and location, initial elastic characteristics of the

respective meso-volume brick or discrete element are

discounted in accordance with Table 1.

Step 5. Step 1 is repeated. 3-D Mosaic code is run

again under first failure load PF
1 or first failure dis-

placement UF
1 in the input.

Step 6. Step 2 is repeated. If any of the failure strain

indicators in (39) reaches value 1, the second failure

has occurred. The respective failure mode and location

are identified.

Step 7. Step 3 is repeated. The ‘‘second failure load’’

PF
2 or ‘‘second failure displacement’’ UF

2 is determined.

All second failure characteristics can be viewed in the

respective postprocessor window.

Step 8. Then Step 4 is repeated. If no new failure has

occurred in this step, the applied load or displacement

magnitude can be increased, and the respective anal-

ysis steps repeated.

The process can be continued until all material

bricks (meso-volumes) fail in one of the global coor-

dinate directions x; y; z, or in one of the planes y–z,

z–x, x–y. Any of these two results can be viewed as

total loss of load-bearing capacity of the structure. In

current version 3-D MOSAIC code can run in cycles

until the ultimate failure condition is reached.

Geometric models of 3-D woven fabrics
and composites

Design and fabrication of 3-D woven preforms

and composites

3TEX, Inc. has exclusive license to patent issued to

North Carolina State University [80] for special

method of forming 3-D woven fabrics. Those inter-

ested in details of the method, currently applied

industrial 3-D weaving process, available automated 3-

D weaving machines and their capabilities, are directed

to the patent and recent publications [3, 4, 8].

A representative model of 3-D woven fabric is

shown in Fig. 6. The principal design parameters are:

size of the warp, fill and Z yarns (characterized in yield/

lb), number of warp-directional yarns placed within

1 in. (2.54 cm) interval in the width direction (charac-

terized in ends/inch), number of fill-directional yarns

placed within 1 in. interval in the longitudinal, fabric

formation direction (characterized in picks/inch), and

Z-yarn insertion parameter in the width direction

(characterized in ends/inch). In addition to that, the

designer has to assume cross-sectional shape of each

yarn type and specify the path of Z-yarn in through-

thickness direction. In principle, having these design

parameters enables to generate a Fabric Geometry

Model, for example, the one shown in Fig. 6, using

Solid Works or other suitable software.

3TEX has designed and fabricated a variety of sin-

gle-layer 3-D orthogonal woven S-2 glass fiber fabrics,

which are of particular interest for different composite

armor systems, see [1, 5, 9, 17]. A photograph of one

representative fabric of this class, containing two warp

and three fill layers, and having areal weight 3.46 kg/m2

(93 oz/yd2) is shown in Fig. 7a. For brevity this fabric

will be further identified by its areal weight and called

‘‘93oz fabric’’. Both warp layers are made of 250 yield/

lb S-2 glass roving; 5 double ends/inch insertion used;

50.8% of total fiber amount in the preform is placed in

warp direction. Two outer fill layers are made of 750

yield/lb S-2 glass roving, while the middle fill layer is

made of 250 yield/lb S-2 glass roving; double yarn

insertion with 5.5 picks/inch used in filling direction;

45.6% of total fiber volume is placed in fill direction.

Finally, Z-yarn is 1250 yield/lb S-2 glass roving (5 ends/

inch insertion); 3.6% of total fiber amount in the pre-

form belongs to Z-yarns, however only about 2% goes

in through thickness direction; rest of it (about 1.6% of

total fiber volume) forms ‘‘Z-crowns’’, which are

clearly seen in Fig. 7a; those are oriented in the warp

direction and pass above filling yarns on the fabric

surface. The described design yields nearly balanced

fabric with respect to the fiber content in warp and fill

directions; the fiber content in warp direction, 50.8%, is

slightly higher than in fill direction, 45.6%.

Composite panels were fabricated from 93oz S-2

glass fabric by 3TEX using Vacuum Assisted Resin

Transfer Molding (VARTM) process with Dow Der-

akane 8084 Epoxy-Vinyl Ester resin. Fiber volume

Fig. 6 Representative element of 3-D woven fabric [3]. Five
layers of warp yarns shown in red, six layers of filling yarns
shown in yellow, and through thickness (Z) yarns shown in green
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fraction of 49% in produced composite panels was

determined in accordance with ASTM D2584 standard.

A photograph of composite panel fragment is shown in

Fig. 7b. Comparison of Fig. 7a and 7b show that the

fiber architecture seen in dry fabric was practically not

affected by resin infusion and composite consolidation.

Dimensions of the yarns, spaces between them, and

their straightness are practically the same in Fig. 7b as

in Fig. 7a. The dimensions of representative surface

elements shown in Fig. 7 also look identical. The

measured thickness of composite panel (ranging be-

tween 2.4 mm and 2.6 mm) is slightly smaller than the

measured thickness of dry fabric (between 2.6 mm and

2.8 mm).

Computer generated 3-D geometric models of the

fabric and composite elements (including selvage edge)

are shown in Fig. 8. Photograph of composite panel

cross section and detailed view of the fabric model cut

side edge are shown in Fig. 9.

Photograph shown in Fig. 9a (this image is repre-

sentative of all cross-sections of composite) reveals

that the Z-yarn path is not what was expected for ‘‘3-D

orthogonal weave’’ architecture. Indeed, Z-yarn is not

exactly vertical, it rather follows a ‘‘broken line’’ pat-

tern with three characteristic segments inclined at dif-

ferent angles. In the model of Fig. 9b, which was

adjusted to mimic Z-yarn path of Fig. 9a as close as

possible, it was assumed that two outer segments are

inclined at 35� angle with respect to Z-axis, while

the middle segment is exactly vertical. If desired,

geometric models shown in Figs. 8 and 9b can be fur-

ther modified to match the actual Z-yarn path in the

composite even closer.

Further, it is clearly seen in Fig. 9a that the hori-

zontal, ‘‘warp-oriented’’ segments of Z-yarn are sub-

stantially indented into the filling yarn laying under it.

Such indentation is caused by tension applied to Z-

yarns during weaving. This makes slight difference

between Figs. 9a and 9b, because in the latter one the

filling and Z-yarns in the ‘‘crown’’ area have constant

thickness. These details of different yarn placement

and their mutual interaction in 3-D woven composite

would not considerably influence effective elastic

properties or structural response in many loading

cases, however they may be significant in ballistic

penetration modeling, or double cantilever beam

fracture test simulation, or any other problem in which

correct modeling of Z-yarn breakage in the ‘‘crown’’

area is important. As some experimental observations

show, failure of textile composites is often initiated at

the crossover regions of yarns placed in different

directions. Accordingly, the regions of mutually in-

dented, orthogonally oriented filling and Z yarns

should be considered as possible sites of initial failure.

Geometric model of the 93oz fabric composite Unit

Cell, corresponding to the fabric and composite models

of Figs. 8 and 9, is shown in Fig. 10a. It is worth noting

that a ‘‘zig-zag’’ path of Z-yarn seen in Fig. 10a (with

segments inclined at approximately 35� angle to z-axis)

is specific for this particular fabric design. For example,

Fig. 7 Face view of 93oz 3-D
woven fabric (a) and
VARTM processed
composite (b) with
representative surface
elements in frame

Fig. 8 Computer-generated
models of 93oz 3-D woven
fabric (a) and composite (b)
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Unit Cell model of ‘‘190oz fabric’’ composite shown in

Fig. 10b has Z-yarn path much closer to straight and

vertical; this fabric is similar in its construction to the

93oz one, but contains 4 warp and 5 fill layers and is

about twice thicker. Also, even within the same ‘‘2

warp–3 fill layer’’ construction, other fabrics have been

designed and manufactured, in which Z-yarn path is

much closer to straight and vertical. Particularly,

Fig. 11 shows ‘‘98oz fabric’’ model which also has 2

warp and 3 fill layer construction, but with much

smaller size of filling yarns in the outer layers and much

tighter filling yarn packing. The manufactured 93oz

and 98 oz preforms had close thickness and areal

weight, however as experimental studies showed,

mechanical properties of composites made with these

preforms as well as their ballistic and blast perfor-

mance characteristics differ considerably.

A variety of 3-D woven fabrics with nearly identical

areal weight and thickness can be purposefully designed

and manufactured for specific applications. It may

happen though that the best basic mechanical perfor-

mance (stiffness and strength) will not translate into the

best ballistic, blast or low velocity impact performance.

Moreover, even optimal fabric construction found for

one particular armor application (say, personnel armor)

may not be the best for the other armor applications (in

vehicle armor, for example). Design optimization of

3-D woven fabrics for various practical composite

applications is currently based on individual designer’s

experience and intuition with some help of available

experimental data, with practically no role of predictive

analysis tools.

The following sections illustrate our initial efforts in

the area of multi-scale applications of 3-D Mosaic

model and variational analysis approach to 3-D

orthogonal woven composites manufactured by 3TEX.

This includes the following tasks: (i) 3-D stress/strain

analysis of the 3-D woven composite Unit Cell using

the methodology described in Section ‘‘Theoretical

background of present 3-D Mosaic approach’’; (ii)

application of 3-D volumetric averaging methodology

described in Section ‘‘Volumetric averaging of stress/

strain fields in 3-D Mosaic structures’’ that results in

predictions of effective elastic properties of 3-D

woven composite, (iii) 3-D analysis of 3-D woven

composite beam under 3-point bending load, and (iv)

application of progressive failure model and predic-

tions of the sequence of failure events and ultimate

Fig. 9 Photograph of the side
edge fragment of composite
panel (a) and developed
fabric model cross section (b)

Fig. 10 Unit Cell models of
93oz (a) and 190oz (b) 3-D
woven fabric composites

Fig. 11 Geometric model of 98oz 3-D woven fabric showing
straight and vertical Z-yarn path
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in-plane tensile failure load. Numerical results

obtained for tasks (ii), (iii) and (iv) will be compared

with experimental data.

3-D stress/strain analysis of 3-D woven composite Unit

Cell

Derivation of the Unit Cell model

Now we return to analysis of S-2 glass 93oz fabric

composite and will start with discussion of its Unit Cell

model, shown in Fig. 12a. This is essentially the same

model as in Fig. 10a with notations of geometric

parameters added. In order to finalize geometric

characteristics of the Unit Cell, we applied iterative

approach, using both fabric processing parameters and

direct measurements made on the produced fabric and

composite. The determined characteristics of this

geometric model are:

Wx ¼ Fx þ Zx ¼ 2a ¼ 4:618 mm; Fx ¼ 4:326 mm;
fx ¼ 3:028 mm; Zx ¼ 0:292 mm;
Fy ¼Wy þ Zy ¼ 2b ¼ 5:08 mm; Wy ¼ 4:171 mm;
Zy ¼ 0:909 mm; Wz ¼ 0:637 mm;
Fz ¼ 0:614 mm; fz ¼ 0:292 mm; zz ¼ 0:292 mm;
Zz ¼ 2Wz þ Fz þ 2fz ¼ 2c ¼ 2:472 mm;
Hz ¼ Zz þ 2zz ¼ 3:056 mm

ð40Þ

As discussed in Section ‘‘Design and fabrication of

3-D woven preforms and composites’’, the model of

Fig. 12a does not account for indentation of the warp-

oriented segments of Z-yarns into respective segments

of filling yarns on the fabric surfaces. Due to this,

thickness of the Unit Cell model is larger than that of

the fabricated composite. Also, there is more resin on

both faces of the Unit Cell model compared to the

actual composite. As the result, total fiber volume

fraction in the Unit Cell model of Fig. 12a is a little

lower than in actual composite. In order to minimize

these discrepancies, the modified Unit Cell model

shown in Fig. 12b has been generated; its principal

characteristics showed nearly identical to the ones

measured on the actual composite. In this model, thin

outer layers which contain matrix and small warp-

directional segments of Z-yarns, are neglected. So, as

seen in Fig. 12b, only those segments of Z-yarn which

go in through-thickness direction are kept in the

model. Total fiber volume fraction in the composite

Unit Cell model of Fig. 12b match the experimental

49% value, under the assumption that so-called ‘‘yarn

packing factor’’ (i.e. fiber volume fraction in resin-

impregnated yarn) is 60% for all warp, fill and Z-yarns.

The Unit Cell model of Fig. 12b is still rather com-

plex and requires very fine discretization mesh due to

the presence of inclined Z-yarn segments. Following

[18], this model is further modified for the sake of

simplicity of its representation in terms of generic

Mosaic parallelepiped of Fig. 1. Specifically, the in-

clined Z-yarn elements are smeared with their sur-

rounding matrix into homogeneous bricks; this results

in the Mosaic parallelepiped model shown in Fig. 13a.

The four homogeneous bricks having monoclinic

effective elastic properties in x–z plane represent the

inclined Z-yarn segments surrounded by matrix. As

follows from the equivalency between geometric

models of Fig. 12b and 13a, these composite bricks

have 16.5% fiber volume fraction.

The obtained Mosaic parallelepiped model of

Fig. 13a contains five distinct materials (meso-

volumes): three unidirectional composites corre-

sponding to resin impregnated warp, fill and Z yarns,

‘‘smeared inclined’’ Z-yarn composite, and matrix

pockets. Further, as illustrated in Fig. 13a, the model

is non-uniformly divided into some number of 3-D

‘‘discrete elements’’ by three sets of planes perpen-

dicular to x, y and z axes. This discretization mesh will

Fig. 12 Unit Cell model of
93oz fabric composite
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be used in further numerical examples. The other

model, which will be used in those problems where

symmetry applies with respect to three planes

perpendicular to x, y and z axes and passing through

the center of the parallelepiped, is 1/8th part of the

Unit Cell shown in Fig. 13b.

Elastic properties of the meso-volumes

Properties of all material bricks (meso-volumes) con-

tained in the Mosaic parallelepiped model of Fig. 13a

have to be determined prior to analysis and used as

input data. This can be done either experimentally or

by applying some appropriate predictive analysis

method at the lower level of structural hierarchy. For

the sake of illustrating a multi-scale capability of 3-D

Mosaic analysis approach, effective elastic properties

of unidirectional composite made of S-2 glass fiber

roving (60% fiber volume fraction) and Dow Derakane

8084 Vinyl Ester-Epoxy resin have been predicted in

[18] with the use of micromechanics model shown in

Fig. 14. Total fiber volume fraction Vf in the composite

is related to geometric parameters a and b by equation

b=a ¼ 1=
ffiffiffiffiffiffi
Vf

p
. The condition Vf =0.6 yields b/a=1.29.

The following properties of isotropic S-2 glass fiber and

isotropic Dow Derakane 8084 Vinyl Ester-Epoxy are

further used:

Ef ¼ 86:9 GPa; mf ¼ 0:22; Em ¼ 3:17 GPa; mm ¼ 0:35 ð41Þ

First, 3-D stress/strain analysis was performed for

Model 2 shown in Fig. 14. Then, ‘‘Applied Strain’’ and

‘‘Applied Stress’’ approaches with volumetric averag-

ing of 3-D stress and strain fields have been applied in

accordance with the methodology of Section ‘‘Volu-

metric averaging of stress/strain fields in 3-D Mosaic

structures’’. Numerical results obtained for effective

Fig. 13 3-D Mosaic model of
93oz 3-D weave composite
Unit Cell (a) and its 1/8th part
(b)

Fig. 14 3-D Mosaic models
of unidirectional composite
Unit Cells [18]
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elastic constants with Bernstein basis functions having

degree 3 and degree 4 are presented in Table 3.

Numerical results obtained with SAM and experi-

mental data from fiber manufacturer’s (Advanced

Glassfiber Yarns, LLC) website, are also presented in

the table.

It is seen in Table 3 that present results (for both

applied displacement and applied stress cases) show

clear convergence: the difference between results

obtained with degrees 3 and 4 is negligible for all

predicted elastic characteristics. A considerable dif-

ference is seen between the upper bounds (applied

strains) and lower bounds (applied stresses) for ELh i,
while for ETh i and mTTh i the difference is much smaller,

and for mLTh i it is negligible. Further, the applied strain

approach provides upper bounds for ELh i and ETh i,
and lower bound for mTTh i. Results for ELh i and mLTh i
obtained with present approach are very close to the

SAM results and are in a good agreement with

experimental data. For ETh i the discrepancy with

experimental data is more significant; this can be

explained by possible difference between Young’s

modulus of the matrix adopted in the analysis and

actual Young’s modulus of unspecified ‘‘epoxy’’ resin

used in fabrication of this composite. Yet, predictions

of ETh i obtained from 3-D Mosaic analysis are much

closer to experimental data than respective predictions

by SAM. Also it is seen in Table 1 that for mTTh i
present results are significantly lower than the SAM

prediction, and that predicted values of GLh i and GTh i
are considerably higher than the SAM predictions. We

do not possess experimental data for these character-

istics at the time.

In numerical examples considered further in this

paper the following effective elastic properties of warp-,

fill- and Z-unidirectional composites will be used (index

1 corresponds to fiber direction and indices 2, 3 to

transverse directions):

E1 ¼ 53:12 GPa; E2 ¼ E3 ¼ 14:66 GPa;
G12 ¼ G13 ¼ 4:24 GPa; G23 ¼ 5:78 GPa;
m12 ¼ m13 ¼ 0:266; m23 ¼ 0:268

ð42Þ

3-D stress/strain analysis of the Unit Cell and

convergence study

As a preambule, it is worth noting that 3-D stress/strain

analysis of the Mosaic parallelepiped shown in Fig. 13a

is complex task, and interpretation of numerical results

is non-trivial. The analyzed structure consists of a large

number of perfectly bonded bricks representing three

unidirectional composites (having identical elastic

properties (42) in their coordinate axes 1, 2 and 3 but

different orientation), monoclinic composite repre-

senting inclined Z-yarn in matrix, and isotropic matrix

itself. These distinct material bricks form a complex

mixture of parallel and sequential connections. Prob-

ably, the best way to illustrate numerical results for this

kind of 3-D stress/strain analysis problem is to make

color ‘‘carpet’’ plots with two coordinates along in-

plane axes of a plot and stress or strain component

shown by iso-stress or iso-strain contours with respec-

tive values on them. The coordinate system origin is

placed in the center of the Unit Cell, so coordinate x

varies from )a to a, coordinate y from )b to b, and

coordinate z from )c to c.

Both the discretization mesh and degree of Bern-

stein basis functions can be varied when running spe-

cific analysis cases, particularly when performing

convergence study. In the numerical examples pre-

sented here we kept the discretization mesh shown in

Fig. 13a constant and varied degree of basis functions.

It has to be noted that continuity conditions for strains

and stresses within homogeneous material bricks (10)–

(12) were not imposed in the forthcoming numerical

examples. Due to this, small computational jumps of

strains and stresses may be seen at some lines and

points separating discrete elements within homoge-

neous material brick.

In the first boundary value problem solved, uni-

formly distributed displacements �u0
x and u0

x are

applied in x direction to the sides x = )a and x = a of

the Unit Cell. All other sides are free of forces or

displacements. Second boundary value problem

Table 3 Elastic properties of
Vf = 0.6 S-2 Glass/Dow
Derakane 8084 Vinyl Ester-
Epoxy unidirectional
composite predicted by
different analysis methods
and obtained experimentally

Analysis Method Polynomial
degree

ELh i GPa ETh i GPa mLTh i mTTh i GLh i GPa GTh i GPa

Present (applied strain) 3 53.12 14.68 0.265 0.267 4.28 3.92
4 53.12 14.66 0.266 0.268 4.24 3.92

Present (applied stress) 3 44.50 13.28 0.265 0.295 –
4 44.46 13.22 0.265 0.296 –

SAM 53.42 10.68 0.265 0.449 4.18 3.69
Experimental 56 18 0.27
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considers uniformly distributed displacements �u0
y and

u0
y applied in y direction at the sides y ¼ �b and y=b,

respectively. All other sides are free of forces or dis-

placements. Third boundary value problem was solved

for uniformly distributed displacements �u0
z and u0

z

applied in z direction at the sides z = )c and z = c,

respectively. All other sides are free of forces or dis-

placements. Numerical results for one selected strain

components in each problem are shown in Figs. 15–17,

respectively.

One important conclusion made from these numer-

ical results is, that for all three considered boundary

value problems, the symmetry conditions ux = 0 at at

x = 0, uy = 0 at y = 0 and uz = 0 at z = 0 can be applied

simultaneously without affecting results for computed

strains. Analogous study was performed for the stresses

and led to the same conclusion. This means that 1/8th of

the Unit Cell shown in Fig. 13b can be used in these

analysis cases instead of the whole Unit Cell. This

allows, in turn, reducing the size of each of the above

three computational problems by approximately factor

of 8, which is especially useful when conducting con-

vergence studies with higher degree basis functions.

Further, convergence study has been performed for

the same three boundary value problems, but solving 1/

8th of the Unit Cell (see Fig. 13b) with respective

symmetry conditions added. The origin of coordinate

system remains in the center of the Unit Cell, so for its

1/8th part coordinate x varies from 0 to a, coordinate y

from 0 to b, and coordinate z from 0 to c. Numerical

results for the same strain components are presented in

Figs. 18–20.

Figure 18 shows some differences among results for

degrees 2, 3 and 4, whle the results for degrees 4 and 5

look indistinguishable. One can see in these plots that

the strain distribution is rather uniform and the highest

strain exceeds the lowest one only by 20%. Yet, even

with this nearly uniform strain distribution, local strain

gradients are clearly visible, which indicates high res-

olution of the performed analysis.

Similarly, Fig. 19 shows that there are some differ-

ences among results for degrees 2, 3 and 4, while the

plots for degrees 4 and 5 look identical. In this case the

strain distribution is not as smooth as in the previous

case: the highest strain value corresponding to the

matrix pocket is about two times higher than the lowest

one corresponding to the filling-directional composite.

Still, the regions of higher strain gradients are clearly

seen.

Fig. 15 Distribution of strain ex in y–z plane at x = a for applied
displacement in x direction

Fig. 16 Distribution of strain ey in x–z plane at y = b for applied
displacement in y direction

Fig. 17 Distribution of strain ez in x–y plane at y = c for applied
displacement in z direction
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Results in Fig. 20 show again some differences

among the strain plots for degrees 1, 2 and 3, while the

plots for degrees 3 and 4 look nearly identical. In this

case the strain variation is much sharper than in

Figs. 18 and 19; the highest strain is about 10 times

larger than the lowest one. There are four distinct areas

of nearly uniform strains: one of them corresponds to

the matrix pocket (highest strain), the second to the

filling-directional composite with warp yarn composite

below (lower strain), the third to the ‘‘smeared’’

Z-yarn composite (the strain value there is about the

same), and the fourth area corresponds to the fill-

directional composite with matrix pocket below (the

lowest strain is observed there). Also, high strain

gradients are visible in the zones between these four

nearly uniform strain areas.

Analogous convergence study has been performed

for several stress components. The most significant

difference is, that the stress variations in this case are

much more non-uniform, stress gradients are more

pronounced, and some indications of possible singu-

larity points and lines are clearly seen. These effects

are illustrated in Figs. 21 and 22.

Figure 21 shows variations of rx and rz stresses in

x-coordinate direction, and Fig. 22 shows their varia-

tions along z coordinate. The line along which these

variations were plotted in Fig. 21 is the back-top edge

of the Mosaic parallelepiped of Fig. 13b. Point

x = 0.344a corresponds to the junction of two dissimi-

lar material bricks at free surface. Sharp stress varia-

tions and significant differences between stress values

computed with polynomial degrees 4 and 5 are seen

there. Looks like this may be a singularity point. Note

that there is no visible discontinuity of rx at that point

(this stress component has to be continuous between

the bricks), while obvious discontinuity is seen for rz

(continuity of this stress component is not required).

Also, away from that point stress values computed with

Fig. 18 Distributions of strain ex in y–z plane at x = a for Bernstein polynomial degrees 2 (a), 3 (b), 4 (c) and 5 (d); displacement
applied in x direction
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polynomial degrees 4 and 5 are close, and rz is close to

zero (ideally, it has to be zero at free surface).

The line along which these variations are plotted in

Fig. 22 is the right-back edge of the Mosaic parallele-

piped of Fig. 13b. It is seen that rx variations have

sharp peaks and big jumps at two junction points of

dissimilar material bricks. Both points are between the

filling yarn composite and matrix. The jumps of rx seen

in Fig. 22a at those points are natural due to significant

property difference between unidirectional composite

and pure matrix. At the same time, Fig. 22b shows

continuous variation of rz, as it should be.

We can conclude from numerical results in Figs. 21

and 22 that, at least qualitatively, they are correct. It

has to be pointed out that usually the most difficult task

of 3-D analysis is to accurately predict stress variations

at, or near free surfaces (the classical free edge effect

problem for composite laminates is the best-known

example of this kind). The lines along the edges of

Mosaic parallelepiped with junction points of dissimi-

lar materials have been chosen for illustration inten-

tionally, in order to present most difficult cases.

Stress singularities in the Unit Cell model

Now, after we have revealed that there are possible

singularities in the 3-D stress state of the Unit Cell

model under consideration, the question is what to do

with them. It is not easy to give a simple and satisfac-

tory answer, and the whole issue of stress singularities,

which are artificially created when discretizing any

textile composite into 3-D blocks of homogeneous

materials, deserves separate comprehensive analysis

and discussion. Due to limited space here we can af-

ford only short remarks.

First, the analyst has to decide what is the purpose of

specific analysis to be performed. If this is prediction of

effective elastic properties, then those suspected stress

Fig. 19 Distributions of strain ey in x–z plane at y = b for Bernstein polynomial degrees 2 (a), 3 (b), 4 (c) and 5 (d)
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singularities would probably be simply ignored. In-

deed, after performing volumetric averaging of stress

and strain fields within Mosaic parallelepiped, the

contribution of singular stresses in close vicinity of the

points or lines of singularity will likely be small,

regardless of how accurately their finite-value

Fig. 20 Distributions of strain ez in x–y plane at z = c for Bernstein polynomial degrees 1 (a), 2 (b), 3 (c) and 4 (d)
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a bFig. 21 Variations of rx (a)
and rz (b) along x coordinate
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magnitudes have been determined. Next question is,

what contribution singular stresses themselves would

make. Based on the author’s experience from studying

numerically stress singularities in several 3-D elasticity

problems (including composite bonded joints and

composite stiffened panels, where step-wise variations

of elastic properties take place) their contribution

should also be negligible. Keeping in mind that no

mathematical tool is available for analytical determi-

nation of the order of singularity in 3-D elasticity

problems, the following approach has been used. A

close-up stress-coordinate variation was computed in

the vicinity of singularity point with increasingly fine

computational mesh towards the point. It was found

that a sequence of such analysis runs provide con-

verging stress values at some distance from the singu-

larity point. However for some other point, closer to

the point of singularity, the stress convergence was not

achieved, and further mesh refinement was required.

Of course, this process can be continued endlessly with

no final success, because in the presence of stress sin-

gularity no mesh can provide converged stress exactly

at the singularity point. But, having sufficient sequence

of stress variations allows one to extrapolate them to

the singularity point by some singular analytical func-

tion and determine the order of singularity as the best

fit to computed finite stresses. Note that the order of

stress singularity must to be less than 1 (so-called

‘‘weak singularity’’), otherwise strain energy stored by

elastic body would be infinite.

Further, having an analytical expression for the

singular stress, one can integrate it over a very small

interval in the vicinity of singularity point and deter-

mine what contribution it makes to the total stress

integral taken over the length, width or thickness of the

solved composite structure. As specific numerical

examples showed, the contribution coming from any

stress singularity point is negligible. If translating this

into the language of volumetric stress averaging

methodology described in Section ‘‘Volumetric aver-

aging of stress/strain fields in 3-D Mosaic structures’’,

we can expect that the averaged stress will converge

with uniformly increasing number of rendering points

for any fixed computational mesh or polynomial de-

gree. If, in addition to this, converged results will also

be obtained for volumetrically averaged stress when

refining computational mesh or polynomial degree,

then we can ensure that converged values have been

also obtained for effective elastic characteristics.

If the purpose of analysis is predicting initial or

progressive failure with the use of some phenomeno-

logical failure criterion, then infinite stresses cannot be

used, simply because failure of the material would be

predicted at infinitesimal load value. Though, extrap-

olation and averaging of singular stress within some

‘‘small interval’’ around its singularity point (following

procedure described in the previous paragraph), would

result in a finite averaged stress value that can be used

in any phenomenological failure criterion. The only

remaining issue with this approach would be that the

obtained finite stress value will be sensitive to the

length of the averaging interval, so will be the pre-

dicted failure load computed at each failure occur-

rence.

An alternative approach, which may appear more

productive, takes into consideration that stress singu-

larities always take place at the interfaces between two

or more distinct material bricks at the exterior surfaces,

or among three or more distinct material bricks inside

Mosaic structure. Using the capability of present ap-

proach to incorporate 2-D planar cracks into the model

(see Section ‘‘Crack propagation modeling’’), such

cracks can be introduced in the sites of stress singu-

larities. This would allow to re-formulate the problem
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Fig. 22 Variations of rx (a)
and rz (b) along z coordinate
at x = a, y = b for Bernstein
polynomial degrees 4 and 5
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of singular stresses in ‘‘perfectly bonded’’ Mosaic body

for the problem of singular stresses at the crack tips in

Mosaic body with planar cracks at the interfaces. The

latter problem may seem more reasonable mechanis-

tically, though another dilemma arises right a way:

according to this logics, the analyst has to introduce

small cracks in all singularity sites of Mosaic body,

when the structure is exposed even to infinitesimal load

level (during handling or shipping, for example). Is

such localized cracking under infinitesimal load a

reality in textile composites, or we would add another

artifact created by the model? It should be obvious

from this discussion that there is no perfect solution for

all the aforementioned dilemmas, and the next attempt

should be in the direction of re-formulating the model

itself.

One possible way to re-formulate the model is to

dwell into the next lower level of structural hierarchy

of the material. Indeed, the above discussed, artificially

created stress singularities or ‘‘initial’’ interfacial

cracks would disappear right after a deeper physical

sense is brought into the model. Specifically, each

homogenized composite material brick (e.g., textile

yarn impregnated with resin) in the Unit Cell model of

Fig. 13 consists of thousands and tens of thousands of

individual fibers (many of them are in contact) im-

mersed in matrix material. Accordingly, at the fiber-

matrix level of hierarchical modeling (illustrated in

Fig. 14), there are no more dissimilar bricks of differ-

ent homogenized composites and matrix, rather there

are homogeneous fibers in different directions and

matrix filling spaces among them. Now we return to

symbolic models of Fig. 2 and face again stress singu-

larities at certain points and lines of the new, much

finer model of 3-D woven composite, as discussed in

Section ‘‘Meso-volume’’ and ‘‘3-D Mosaic’’ concepts’’.

At this point, one can reasonably remind us that

graphite, aramid and many other fibers have their own

complex micro- and nano-structure (see illustration in

Fig. 23) and suggest that the analysis has to be initiated

at that next lower level of structural hierarchy. Where,

again, we would face new stress singularities. Specifi-

cally, each distinct line seen in Fig. 23 inside fibers

corresponds to some kind interface between different

structural micro-blocks, and stress singularities are

possible along those lines.

Chasing stress singularities in the micro- and nano-

worlds would only end at the point where the very

meaning of ‘‘stress’’ is lost. Then, the other funda-

mental question would arise: how to relate forces acting

between atoms and molecules, as considered in Physics,

to stresses considered in Continuum Mechanics? This is

a very difficult question. Significant efforts in recent

years have been by made by several authors to

approach this issue from different standpoints, see for

example theoretical developments and relevant refer-

ences in [81, 82]. Our further objective here is more

limited and modest: to demonstrate applications of 3-D

Mosaic approach at several levels of structural hierar-

chy to some example problems in which stress singu-

larities should be insignificant. And, importantly,

validate theoretical predictions by experimental data.

Effective elastic property predictions and their

experimental verification

Having established certain confidence that 3-D stress/

strain fields in the Unit Cell model can be computed

with sufficient accuracy when using higher degree

Bernstein polynomial basis functions (except for pos-

sible points and lines of stress singularity), the meth-

odology of predicting effective elastic properties

described in Section ‘‘Volumetric averaging of stress/

strain fields in 3-D Mosaic structures’’ has been exer-

cised for 3-D woven fabric composite under consider-

ation [18].

After solving all of the necessary 3-D boundary value

problems under applied strains and stresses, the com-

puted strain and stress fields have been volumetrically

rendered and then averaged. The stress/strain render-

ing mesh in x, y and z directions was methodically

refined, starting from 10 intervals in each direction and

Fig. 23 Cross section of unidirectional T300 carbon fiber/epoxy
matrix composite showing fine microstructure within fibers. FEI
610 Focused Ion Beam (North Carolina State University
Analytical Instrumentation Facility) was used to sputter away
the surface at specified energy level. Courtesy to Dr. Dale
Batchelor and Mr. Philip Bradford
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ending with 60–80 intervals, until the results for effec-

tive elastic constants did not change in first three sig-

nificant digits. Additionally, the analysis was run for

Bernstein basis function degrees 3, 4 and 5. Converged

numerical results obtained for the Unit Cell of Fig. 13

with the use of 5th degree Bernstein polynomials are

presented in Table 4. Also, for comparison purpose we

present in the table theoretical results obtained with

SAM and CAM. Theoretical results are complemented

in Table 4 by experimental data.

Mechanical characterization of this composite was

performed at Institute of Polymer Mechanics (Riga,

Latvia) under contract from 3TEX. Elastic and strength

characteristics were obtained for the following loading

cases applied separately in warp and fill directions:

tension (according to ASTM D3039 standard), com-

pression (ASTM D3410), and in-plane shear (following

standards ASTM D4255 and ASTM D5379).

Results in Table 1 let us make some comparisons

and draw conclusions about the accuracy of different

methods in predicting effective elastic properties of 3-

D woven composites. First, similar to the SAM/CAM,

present analysis enables for predicting upper and lower

bounds of effective elastic constants. It is seen from the

table that for Young’s moduli, the 3-D Mosaic applied

strain and applied stress analyses provide much closer

bounds than the bounds predicted by SAM/CAM.

Further, for the three Young’s moduli the upper

bounds predicted by present analysis and by SAM are

very close. It is also seen that the experimental tensile

moduli in warp and fill directions are approximately in

the middle between the upper and lower bounds pre-

dicted by present analysis. The experimental moduli

obtained from compression tests are considerably

higher and go beyond the upper bounds. This result is

surprising, because it is usually expected that ‘‘com-

pressive’’ elastic moduli of textile composite should be

lower than the ‘‘tensile’’ ones. Other experimental

studies of similar 3-D woven S-2 glass composites did

not show this ‘‘anomaly’’.

Further, the CAM predictions of all Poisson’s ratios

are higher than the respective SAM results. At the

same time, 3-D Mosaic analysis with applied strains

predicts one Poisson’s ratio lower and the other two

Poisson’s ratios higher than the respective values pre-

dicted by applied stress analysis. Overall, as seen from

Table 4, the Poisson’s ratios predicted by present

analysis and by SAM are sufficiently close. Experi-

mental value of m12 is between the present analysis and

SAM results. All three shear moduli predicted by

3-Mosaic analysis are significantly higher than the

respective values predicted by SAM. Experimental

value of G12 provided by Two-Rail Shear method is

quite close to the present analysis result, while OAM

prediction yields significantly lower value.

As an example of more detailed comparison of

available theoretical and experimental results, Fig. 24

shows experimental stress–strain curves for five warp-

directional and five fill-directional specimens tested for

uniaxial in-plane tension. Theoretical results obtained

with 3-D Mosaic approach under applied strains or

applied stresses, as well as results provided by SAM

and CAM are plotted in the figure. It is seen that

experimental stress–strain curves for both groups of

five specimens go between the upper and lower bounds

provided by both analysis tools. The upper bounds

predicted by 3-D Mosaic and SAM analyses are very

close, while the lower bounds predicted by 3-D Mosaic

analysis are significantly higher (and closer to experi-

mental data) than respective CAM lower bounds.

3-D Mosaic simulations of 3-point bending test

and their experimental verification

Next example considers 3-point bending test simulation

of the same 93oz 3-D woven S-2 glass fiber composite

Table 4 A comparison of predicted and experimental effective elastic constants of 93oz 3-D woven S-2 Glass/Dow Derakane 8084
Epoxy-Vinyl Ester resin composite

Theoretical/
experimental
method

Effective elastic characteristics

E1h i GPa E2h i GPa E3h i GPa m12h i m13h i m23h i G12h i GPa G13h i GPa G23h i GPa

Present analysis (applied strain) 27.31 25.70 9.98 0.125 0.432 0.448 3.58 3.52 3.34
Present analysis (applied stress) 20.59 17.70 9.60 0.134 0.381 0.358 – – –
SAM 27.54 24.89 9.72 0.093 0.402 0.402 3.16 3.11 2.98
CAM 14.51 13.13 8.30 0.099 0.425 0.430 3.16 3.02 2.97
Experimental (tension) 24.68 20.75 N/A 0.11 N/A N/A
Experimental (compression) 30.82 28.61 N/A N/A N/A N/A
Experimental (two-rail shear) 3.86 N/A N/A
Experimental (V-notch beam) 4.50 N/A N/A
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made with Dow Derakane 8084 Epoxy-Vinyl Ester

resin. 3-point bending tests were performed at Institute

of Polymer Mechanics (Riga, Latvia) under contract

with 3TEX. The test procedures followed ASTM D790

(16:1) standard.

Schematic of a 3-point bending test is shown in

Fig. 25. Here, P is surface load intensity (force/area).

The acting force is assumed normal to the surface and

uniformly distributed over the area Sload ¼ 2a4 � 2b.

Each of the rigid supports has area Ssup ¼ a2 � 2b.

Coordinate axis x goes in longitudinal direction, axis y

across the specimen, and axis z in through thickness

direction. The boundary condition imposed along each

rigid support surface is uz = 0. Owing to the problem

symmetry, 1/4th part of the specimen can be solved,

with additional symmetry conditions: ux = 0 along cross

section x = a, and uy = 0 along cross section y = b; both

cross sections pass through the center of the specimen.

Two different computational models belonging to

two hierarchical levels of 3-D woven composite were

developed for this analysis. Quarter of a specimen

analyzed using ‘‘Homogenized Composite Model’’

(HCM) is shown in Fig. 26. In this model, elastic

properties of 3-D woven composite under consider-

ation (as predicted by 3-D Mosaic analysis) are taken

from Table 4:

E1 ¼ 27:31GPa; E2 ¼ 25:70GPa; E3 ¼ 9:98GPa;
G12 ¼ 3:58GPa; G13 ¼ 3:52GPa; G23 ¼ 3:34GPa;

m12 ¼ 0:125; m13 ¼ 0:432; m23 ¼ 0:448
ð43Þ

Here, material axes 1, 2 and 3 correspond to warp, fill

and Z fabric directions and coincide with axes x, y and

z of the specimen cut in warp direction. For the spec-

imen cut in fill direction, indices 1 and 2 in (43) have to

be interchanged.

Another model named here ‘‘Layered Composite

Model’’ (LCM) is shown in Fig. 27. In this model,

there are five distinct composite layers in the speci-

men, each treated as 3-D orthotropic solid. Two of

them are reinforced in warp direction, and another

three in fill direction. Each of these layers also con-

tains small amount of out-of-plane Z-fiber reinforce-

ment, which is ‘‘smeared’’ together with respective
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Fig. 24 Experimental and theoretical stress–strain curves for warp-directional (a) and fill-directional (b) specimens under uniaxial
in-plane tensile loading

Fig. 25 Schematics of 3-point
bending test simulation
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major in-plane reinforcement. Thickness of each layer

and its fiber volume fraction were calculated using

93oz composite Unit Cell of Fig. 12b. According to

that model, both warp layers have equal thickness and

equal in-plane fiber volume fraction. Two outer fill

layers have equal thickness and equal in-plane fiber

volume fraction, while the middle fill layer has dif-

ferent thickness and different in-plane fiber volume

fraction. Z-reinforcement was accounted as the sec-

ond direction reinforcement in the layer, according to

Fig. 12b geometry.

The following elastic characteristics were computed

for each layer using SAM:

Fill Layers 1 and 5:

E1 ¼ E3 ¼ 6:78 GPa; E2 ¼ 36:12 GPa;
G12 ¼ G23 ¼ 2:54 GPa; G13 ¼ 2:31 GPa;
m12 ¼ 0:055; m13 ¼ 0:47; m23 ¼ 0:291

ð44Þ

Fill Layer 3:

E1 ¼ E3 ¼ 9:73 GPa; E2 ¼ 50:25 GPa;
G12 ¼G23 ¼ 3:78 GPa; G13 ¼ 3:35 GPa;
m12 ¼ 0:052; m13 ¼ 0:453; m23 ¼ 0:269

ð45Þ

Warp Layers 2 and 4:

E1 ¼ 44:45 GPa; E2 ¼ E3 ¼ 8:31 GPa;
G12 ¼ G13 ¼ 3:18 GPa; G23 ¼ 2:85 GPa;
m12 ¼ m13 ¼ 0:278; m23 ¼ 0:461

ð46Þ

Geometric parameters of the modeled beam specimen,

noted in Fig. 25, are:

a ¼ 30 mm; b ¼ 7:0 mm; c ¼ 2:5 mm;
a1 ¼ 9:9 mm; a2 ¼ 0:1 mm; a3 ¼ 19:0 mm; a4 ¼ 1:0 mm;
c1 ¼ c5 ¼ 0:292 mm; c3 ¼ 0:614 mm; c2 ¼ c4 ¼ 0:637 mm

ð47Þ

In addition to notations introduced in Fig. 25, the

following are used here for the LCM: c1 and c5 are

thicknesses of fill layers 1 and 5, c3 is thickness of fill

layer 3, c2 and c4 are thicknesses of warp layers 2 and 4.

First, special computational experiments have been

performed to study the effect of support width a2 on

the predicted displacements, strains and stresses. The

results showed that for this particular geometry the

value a2 = 0.1 mm is the threshold value, below which

changing the support width does not affect numerical

results for displacements, strains and stresses outside

support area. Another set of numerical experiments

showed that a4 = 1.0 mm is within the range where

width of loading nose does not affect results.

Third degree Bernstein basis functions were used in

the x, y and z coordinate directions. Computational

meshes are shown in Figs. 26 and 27 for HCM and

LCM, respectively. In the latter model case, two equal

intervals were used through the thickness of each layer.

It was shown by convergence study that such through-

thickness mesh yields sufficiently accurate predictions

of displacements, strains and stresses (with exception

for small areas above rigid supports and below loading

nose).

Experimental results obtained in 3-point bending

tests are shown in Fig. 28a, b for five warp-directional

and five fill-directional specimens, respectively. In

addition to experimental curves, two theoretical lines

are plotted in each figure; those are straight due to

linear elastic analysis performed. It is seen that for

both groups of five specimens, HCM (red lines) pre-

dicts lower central deflection compared to experimen-

tal values. The difference is more significant in the case

of warp-directional specimens. At the same time, black

lines corresponding to LCM perfectly fit in the center

among five experimental curves for both groups of

warp-and fill-directional specimens.

It is easy to interpret the above results. Obviously,

the HCM is insensitive to actual location of the layers

of warp and fill yarns through the thickness of 3-D

woven fabric composite. When ‘‘smearing’’ warp-

directional fibers through the thickness, their contri-

bution to the overall bending stiffness is increased (due

to a contribution of individual fiber into overall bend-

ing stiffness is proportional to the cube of fiber distance

from the specimen mid-plane). Such increase in overall

bending stiffness of the warp-directional specimens is

caused by smearing, because certain amount of warp

fibers get closer to the outer surfaces of the specimen

than they actually are. In the case of fill-directional

specimens, the two thinner outer filling layers are

located farther from the mid-plane in actual composite,

Fig. 26 ‘‘HCM’’ of 93oz S-2 glass 3-D weave composite and
computational mesh used in the analysis

Fig. 27 ‘‘LCM’’ of 93oz S-2 glass 3-D weave composite and
computational mesh used in the analysis
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thus their contribution to the overall bending stiffness

is underestimated in HCM. At the same time, the

counter-effect is that the third (and the thickest) filling

yarn layer is located near mid-plane in actual com-

posite, so in HCM its effect on the overall bending

stiffness is overestimated.

Results presented in Fig. 28 can be viewed as sig-

nificant success in modeling 3-D woven composite

using 3-D Mosaic analysis approach. Indeed, such

excellent agreement with 3-point bending test data was

achieved after going through three levels of multi-scale

modeling: (i) modeling unidirectional composite and

computing its effective elastic properties, (ii) modeling

3-D weave Unit Cell and computing its effective elastic

properties, and (iii) 3-D simulation of a ‘‘global’’ 3-

point bending problem with the use of LCM or HCM,

both utilizing elastic properties of 3-D woven

composite based on the Unit Cell model.

Progressive failure modeling of 3-D weave
composite Unit Cell

Problem formulation

3-D stress/strain analysis of 3-D woven composite

Unit Cell has to be performed as the first step of

progressive failure analysis described in Section

‘‘Progressive failure analysis using 3-D Mosaic mod-

el’’. The 93oz 3-D woven fabric composite Unit Cell

shown in Fig. 13a is used here for a basic illustration

of the developed approach. The fiber material is S-2

glass, the matrix material is Dow Derakane 8084

Epoxy-Vinyl Ester resin. Due to the symmetry of this

Unit Cell with respect to three orthogonal planes

passing through the Unit Cell center, 1/8th part shown

in Fig. 13b can be solved instead of the whole Unit

Cell. Geometric parameters of the Unit Cell are given

in (40).

Uniaxial in-plane tensile loading case is considered

here with uniformly distributed displacement u0
x ap-

plied in x-direction. The following boundary conditions

were imposed in the boundary value problem under

consideration:

ux ¼ 0 at x ¼ 0; ux ¼ u0
x at x ¼ a; uy ¼ 0 at y ¼ 0;

uz ¼ 0 at z ¼ 0
ð48Þ

Initial (‘‘undamaged’’) elastic characteristics of the

constituent materials incorporated in the 3-D weave

composite Unit Cell model have been defined above,

see Eqs. (41) for matrix and (42) for unidirectional

composite.

Another set of input data required for this analysis

are ultimate strains of matrix and unidirectional com-

posite in tension, compression and shear. These char-

acteristics were obtained from available literature data

for S-2 glass composites with the use of some extrap-

olations. Specifically, the following ultimate strains

were adopted for all unidirectional warp-, fill- and

Z-directional composites:

eT
1 ¼ 2:9%; eT

2 ¼ 0:6%; eT
3 ¼ 0:6%; eC

1 ¼ 1:6%;
eC

2 ¼ 1:8%; eC
3 ¼ 1:8%; eS

4 ¼ 2:0%;
eS

5 ¼ 2:0%; eS
6 ¼ 2:0%

ð49Þ

The following ultimate strains were adopted for matrix

material:

eT
1 ¼ eT

2 ¼ eT
3 ¼ 2:0%; eC

1 ¼ eC
2 ¼ eC

3 ¼ 2:5%;

eS
4 ¼ eS

5 ¼ eS
6 ¼ 3:0%

ð50Þ

For ‘‘smeared’’ bricks containing inclined Z-fiber (axis

1 is oriented in through thickness direction, axis 2 in

warp direction and axis 3 in fill direction), the ultimate

strains were taken as following:
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Fig. 28 Experimental load-central deflection curves for five warp-directional specimens (a) and five fill-directional specimens (b)
tested in 3-point bending; theoretical lines show the HCM and LCM predictions

6584 J Mater Sci (2006) 41:6547–6590

123



eT
1 ¼2:0%; eT

2 ¼1:5%; eT
3 ¼0:6%; eC

1 ¼1:6%;
eC

2 ¼1:7%; eC
3 ¼1:8%; eS

4 ¼2:0%; eS
5 ¼2:0%; eS

6 ¼2:0%
ð51Þ

The above ultimate strain values may be not exactly

as they are in the actual 3-D woven fabric composite,

yet it is believed that they are close enough to rea-

sonably predict the sequence of major failure events

and estimate the ultimate failure load. Yet, if the dis-

crepancy between theoretical and experimental results

will be significant, we can ‘‘calibrate’’ the model (by

adjusting ultimate strains in the first place).

Another group of input data which have to be

specified, are the discount factors entering in Table 1.

With no experimental data available, just for illustra-

tive purpose, we take all of them equal 0.1. These

values can also be changed when calibrating theoretical

predictions against experimental data.

Progressive failure process

After all of the necessary input data have been deter-

mined, we can perform numerical simulations of the 1/

8th Unit Cell progressive failure process.

The predicted sequence of failure events, obtained

from the analysis with ultimate strain values (49)–(51)

is illustrated in Fig. 29. Not to surprise, for the loading

case under consideration, no failure occurrences have

been predicted from compressive or shear strains in the

entire course of progressive failure of this 3-D Weave

composite. A brief description of the sequence of

failure events follows.

First Failure took place in unidirectional Z-reinforced

composite brick shown in Fig. 29(a), in x-direction

(which corresponds to direction 2 in the principal axes of

the unidirectional composite; fibers in the failed brick

are oriented in the material direction 1). Failure condi-

tion eT
2 ¼ 0:6% was satisfied.

Second Failure occurred in unidirectional fill-reinforced

composite brick shown in Fig. 29b, in x-direction (which

corresponds to direction 2 in the principal axes of this

material; fibers in the failed brick are oriented in the

material direction 1). Failure condition eT
2 ¼ 0:6% was

satisfied.

Third Failure is analogous to the Second Failure and

has occurred in unidirectional fill-reinforced composite

brick shown in Fig. 29c, in x-direction. Failure

condition eT
2 ¼ 0:6% was satisfied.

Fourth Failure occurred in ‘‘smeared’’ composite

brick containing inclined Z-fiber shown in Fig. 29d, in

x-direction. Failure condition eT
2 ¼ 1:5% was satisfied.

Fifth Failure occurred in matrix brick shown in

Fig. 29e, in x-direction. Failure condition eT
1 ¼ 2:0%

was satisfied.

Sixth Failure occurred in matrix brick shown in

Fig. 29f, in x-direction. Failure condition eT
1 ¼ 2:0%

was satisfied.

Seventh Failure occurred in matrix brick shown in

Fig. 29g, in x-direction. Failure condition eT
1 ¼ 2:0%

was satisfied.

Eighth Failure occurred in warp-reinforced com-

posite brick shown in Fig. 29h, in x-direction (which is

direction 1 in the principal axes of this unidirectional

composite). Failure condition eT
1 ¼ 2:9% was satisfied.

Stress re-distribution and effective moduli

reduction

After the Eighth Failure had occurred, in accordance

with adopted elastic property reduction scheme, elastic

moduli of all constituent bricks lost 90% of their value

in x direction, which resulted in approximately 90%

Fig. 29 Illustration of the predicted sequence of failure events
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drop of effective elastic modulus E1h i of the Unit Cell

in that direction. Progressive failure analysis was ter-

minated at that point, under assumption that the

composite Unit Cell has totally lost its load-bearing

ability in that direction.

The following plots presented in Fig. 30 illustrate

the computed re-distribution of rx stress at the loaded

surface x=a in the initial (prior to the first failure) state

of the Unit Cell and after some of the failure occur-

rences. For comparison purpose, in all of the cases the

applied displacement was taken u0
x ¼ 0:05 mm, which

corresponds to e0
x ¼ 2:165%. Obviously, all of the

intermediate failures have occurred prior to reaching

this strain level.

When comparing Fig. 30a and b, it is seen that sig-

nificant drop of the stress took place in the areas

occupied by the two fill-reinforced bricks. Figure 30c

illustrates a visible drop of stress in the area occupied

by a large resin brick, which is located to the right from

the warp yarn brick. Finally, after failure of the major

load-bearing element (the warp yarn brick), the stress

distribution becomes very similar to the initial one, as

comparison of Figs. 30a and d shows. However, the

stress level in case (d) is substantially lower than in

case (a).

It is also informative to compare the maximum and

average rx magnitudes for the four aforementioned

states of the Unit Cell. The maximum stress values are:

1.167 GPa (a), 1.204 GPa (b), 1.211 GPa (c) and

0.1216 GPa (d). Therefore, the reduction of x-direc-

tional moduli in all other material bricks by 10 times

has resulted in only 4.4% overstress on the warp-

reinforced brick. The respective computed average

rxh i values are: 0.5903 GPa (a), 0.5134 GPa (b),

0.5048 GPa (c), and 0.0619 GPa (d). Residual effective

modulus of the composite in x-direction then is esti-

mated by simple equation E1h i ¼ rxðaÞh i=e0
x. By

substituting the above determined rxh i values together

with the value e0
x ¼ 0:02165 in this equation, one ob-

tains the following estimates for E1h i: 27.26 GPa (a),

23.71 GPa (b), 23.32 GPa (c), and 2.86 GPa (d).

Therefore, after all eight failure occurrences, effective

modulus of this composite in the loading direction has

dropped down to 10.5% of its initial value.

Strength predictions

Results provided by the progressive failure analysis also

enable for predicting strain values corresponding to

initial and ultimate failures. In the performed analysis,

initial failure had occurred under applied displacement

ui
x ¼ 0:0128 mm, which corresponds to initial failure

strain eiT
x ¼ 0:554%. The respective initial failure stress

in the warp direction of 3-D woven composite is then

estimated as riT
x ¼ E1h ieiT

x ¼ 151 MPa. Then, the ulti-

mate tensile failure strain was predicted as euT
x ¼

2:165%, which corresponds to the ultimate tensile stress

value ruT
x ¼ 679 MPa, if using initial effective elastic

modulus 27.26 GPa. However, before the final, eighth

failure, this effective elastic modulus has been already

discounted down to 23.32 GPa value. Accordingly, it is

more correct to use this modulus for calculation of the

Fig. 30 Distributions of rx in y–z plane at x = a prior to First Failure (a), after Third Failure (b), after Seventh Failure (c), and after
Eighth Failure (d)
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ultimate failure stress, which yields ruT
x ¼ 581 MPa. A

relatively large difference between these two strength

estimates can be reduced by increasing discount factor

values.

The predicted strength values now can be compared

with experimental result for the warp-directional tensile

strength available for this 3-D woven composite, which is

717 ± 24 MPa. The experimental value is slightly higher

than the strength predicted with the initial modulus, and

significantly higher than the strength predicted with the

discounted one. So, the comparison suggests that first,

the assumed ultimate strains, primarily those in (49),

were taken too low, especially considering that ultimate

strain of S-2 glass fiber is about 5%. Specifically, the

ultimate strain value 2.9% was taken for unidirectional

S-2 glass Vinyl Ester-Epoxy composite from the litera-

ture, not from mechanical characterization of this

material. Secondly, the adopted discount factors, all

equal 0.1, are too low, especially in this analysis where

discounts were applied to entire meso-volume bricks

after each failure event. It is not difficult to make both

aforementioned adjustments of the input data (‘‘cali-

brate’’ the model) in order to get as close as desired

agreement between theoretical and experimental

strength values.

Analogously, the progressive failure analysis can be

performed for in-plane tension in fill and Z directions,

then for all three compressive loading cases, and then

for all three shear loading cases. After ‘‘calibrating’’ all

of the model predictions against their respective

experimental counterparts, a full set of basic strength

characteristics would be predicted for 3-D woven

composite under consideration. Then, having those

basic strength characteristics, one would be able to use

them as input data for any higher hierarchical level

failure analysis of structural parts made from this 3-D

woven composite.

The value of having ‘‘calibrated’’ theoretical results

for all ‘‘elementary’’ loading cases is, that they would

identify those values of the input ultimate strains

(49)–(51) and discount factors (Table 1) for constitu-

tive material blocks which brought theoretical pre-

dictions in desirable agreement with experimental

data for this particular 3-D woven composite. After

that, the same ultimate strains and discount factors

can be used in strength predictions of many other 3-D

woven composites built from the same material

blocks. The fact that predictive analysis results per-

fectly matched experimental data for one of them,

would provide confidence that theoretical prediction

for the others will be sufficiently accurate. Results of

such combined theoretical–experimental study for 3-D

woven S-2 glass fiber composites will be reported

elsewhere.

Progressive failure analysis tool based on 3-D Mo-

saic model and variational analysis approach can be

applied to any type of multi-axial, complex loading;

either displacements or stresses may be independently

imposed at each exterior surface element. Any kind of

composite material or structure, which is suitable for

modeling in terms of generic 3-D Mosaic parallelepi-

ped of Fig. 1 can be analyzed by use of current version

of computer code possessed by 3TEX. The analysis

approach has also been extended to dynamic loading

with 3-D transient stress/strain fields analyzed, pro-

gressive failure process simulated, and dynamic failure

loads predicted.

Conclusions

This paper presented principal aspects of hierarchical,

multi-scale 3-D Mosaic structural analysis tool, includ-

ing its methodological concepts, theoretical back-

ground, computational algorithms, and demonstration

of its capability to solve complex and diverse 3-D stress/

strain, failure and fracture mechanics problems for

textile composites. It is believed that this transparent

analysis approach, based on a very elegant mathemat-

ical theory with consistent utilization of mechanistically

justified material models, has gained its place among

other available 3-D structural analysis tools. The

approach is opened to various new generalizations, can

be formulated as either 3-D Ritz-type variational

analysis approach or 3-D p–s-type combined hexahe-

dral 8-noded finite element with Bernstein shape

functions. The developed software package can be

easily included into other finite element codes.

Another goal pursued in this work was to present

historic retrospect and state-of-the-art assessment in

the area of modeling and analysis of textile composites,

with the focus on 3-D woven composites. General

theoretical backgrounds and specific modeling and

analysis approaches thoroughly discussed here often

contain inherent contradictions and inconsistencies,

which may be hidden in complex details of computa-

tional algorithms, but show in the results one way or

the other. Those subtle aspects of modeling and anal-

ysis of textile composites were brought here to open

discussion, which should motivate and facilitate future

developments of computational models and analysis

methods.

Specific problems solved, numerical results pre-

sented, and practical conclusions and recommenda-

tions made in this paper may be useful for generating
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property database for textile composites, which is on

enormous demand from the industry. One area, where

3-D woven composites find fast growing interest and

practical applications, is ballistic armor and blast

mitigation systems; generating reliable material prop-

erty database for them is of a great importance. Yet,

there are very few theoretical studies reported up to

date on computational modeling and analysis of 3-D

woven composites under impact, ballistic and blast

effects, see [22–26]. 3-D Mosaic approach has been

extensively used in modeling impact and blast effects

of 3-D woven composites, sandwich panels with 3-D

woven composite skins, and some other relevant

material systems. Some results of those studies can be

found in [22, 24, 26]. Also, attempts were made to

quantify progressive damage of 3-D woven S-2 glass

composites during ballistic penetration [24] and per-

foration [25] at the Unit Cell level. Commercial finite

element code LS-DYNA was used in the latter two

works. Particularly, [25] presented, probably, first

attempt ever to predict exit velocity of projectile after

ballistic perforation of 3-D woven composite, based on

mechanistic, not phenomenological approach. A

comparison of theoretical results with ballistic test

data presented in that work is encouraging. This

direction of research is fast growing, and many new

results are expected in the near future.
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